

EAAP 2014 Copenhagen, Denmark 25 - 29 August 2014

In vitro incubation of dairy cow diets: 2. Relations between measures and estimates of methane yield

M. Cattani¹, L. Maccarana¹, F. Tagliapietra², S. Schiavon², H.H. Hansen³, L. Bailoni¹

¹Department of Comparative Biomedicine and Food Science, BCA (Italy) ²Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE (Italy) ³Department of Large Animal Science (Denmark)

Background

When single feeds were fermented *in vitro* for 48 h, methane (CH₄) and volatile fatty acids (VFA) productions were closely related (Blümmel *et al.*, 1999)

Molar proportions of main VFA (acetate, propionate, and nbutyrate) influence H₂ formation in the rumen

$$(4H_2) + CO_2 \implies CH_4 + 2H_2O$$

In vitro CH₄ and total gas production (GP) could be predicted from VFA production

On equal in vitro degradability carbon fixed in gas, VFA and microbial mass can greatly change

Aim

AIM

To evaluate relations between values of GP and CH_4

1. Actually measured in vitro

2. Predicted from *in vitro* molar proportions of VFA

Diets

- ✓ A Reference Diet (RD) → representative of dairy cow diets commonly used in Veneto region (North-East of Italy)
- ✓ Other 7 diets were formulated changing the proportions of CP, NDF and lipids, within the limits of viable:
 - Low protein
 - High protein
 - ~ Low fibre
 - ~ High fibre
 - ~ Low lipid
 - ~ High lipid, fat supplement (calcium soaps of palm)
 - ~ High lipid, extruded oilseeds

Measurement of gas production and CH₄

Runs were carried out as described in the previous presentation

Predicted values of GP and CH₄ from VFA

DIRECT GAS, *mmoL/g DM* CO_2 ferm = acet/2 + prop/4 + 1.5 × n-but CH_4 ferm = acet + 2 × n-but - CO_2 ferm

ATERIAL & METHODS **INDIRECT GAS,** *mmoL/g DM* CO₂ buff = acet + prop + n-but + iso-but

TOTAL GAS PRUDUCTION, mL/g DM (CO₂ferm + CO₂buff + CH₄ferm + CO₂iso-but) × 0.0821 × 312

0.0821 = gas constant 312 = temperature (expressed in Kelvin)

All equations are derived from Blümmel et al. (1999)

Statistical analysis

All data were submitted to ANOVA (SAS, 2007) using a model that considered as sources of variation:

1) Diet

2) Incubation time

3) Run within incubation time

Interaction between diet and incubation time was never significant (*P*>0.05), thus it was removed from the model

VFA production of eight diets

	Acet (%)	Prop (%)	n-but (%)
Diet			
Reference diet	56.3	23.4	14.6
Low protein	56.0	24.3	14.9
High protein	57.1	22.8	13.9
Low fibre	55.9	23.6	14.9
High fibre	58.5	23.1	12.8
Low lipid	56.5	23.8	14.3
High lipid, fat	56.6	23.7	14.1
High lipid, oilseeds	56.6	23.4	14.3
SEM	0.15	0.19	0.15
P values			
Diet	< 0.001	< 0.001	< 0.001

65th annual meeting of European Federation of Animal Science

RESULTS & DISCUSSION

Predicted and measured gas production of eight diets

	Gas production (mL/g DM)		
Diet	Predicted	Measured	Pred./meas.
Reference diet	248	273	0.91
Low protein	250	277	0.90
High protein	234	255	0.92
Low fibre	260	287	0.90
High fibre	218	228	0.96
Low lipid	252	265	0.95
High lipid, fat	232	258	0.89
High lipid, oilseeds	237	252	0.94
SEM	7.2	2.4	0.027
P values			
Diet	0.001	< 0.001	0.61

TS &

RESUI

Predicted and measured CH₄ production of eight diets

Diet	CH ₄ production (mL/g DM)			
	Predicted	Measured	Pred./meas	
Reference diet	39.4	43.5	0.91	
Low protein	39.2	41.0	0.96	
High protein	37.8	43.9	0.86	
Low fibre	41.2	44.6	0.92	
High fibre	35.3	40.7	0.87	
Low lipid	39.8	42.9	0.93	
High lipid, fat	36.8	42.2	0.87	
High lipid, oilseeds	37.4	40.5	0.93	
SEM	1.28	0.43	0.030	
P values				
Diet	0.05	< 0.001	0.25	

8

RESU

Linear regression between predicted and

measured values of gas production

Take home messages

Chemical composition of diets changed relations among *in vitro* gas, CH₄, and VFA

Microbial lysis occurring *in vitro* at prolonged incubation times (24 or 48 h) could have partially altered such relations

Stoichiometrical equations are debatable, as do not consider *possible effects of protein (and lipid) on in vitro GP microbial mass as end-product of rumen fermentation*

In vitro GP and CH_4 should be measured, to ensure a greater reliability of results

Accuracy of predictions could improve at shorter incubation times

65th annual meeting of European Federation of Animal Science

CONCLUSIONS

Acknowledgments

The present study was financed by "ARCHAEA" Project: "Feeding strategies to reduce methane emissions from dairy cows", Veneto Region Rural Development Programme (RDP) 2007-2013

Sample collection

At the beginning of 4 runs (t = 0)

At the end of 4 runs (24 or 48 h)

An aliquot (5 ml) of fermentation fluid was sampled from each bottle and analyzed for VFA by gas-chromatography