

Digestive efficiency of the growing rabbit according to the restriction strategy and the dietary energy concentration

T. Gidenne, Fortun-Lamothe L., Combes S.

INRA Toulouse, GenPhySE unit, France

65th Annual meeting of the European Federation of Animal Science 25-29 August 2014; Copenhagen, Denmark

CONTEXT AND AIM

Intake limitation strategies after weaning of the rabbit

- Improve the digestive health (-20% intake respect to ad libitum)
- Improve the <u>digestive efficiency and feed conversion</u>

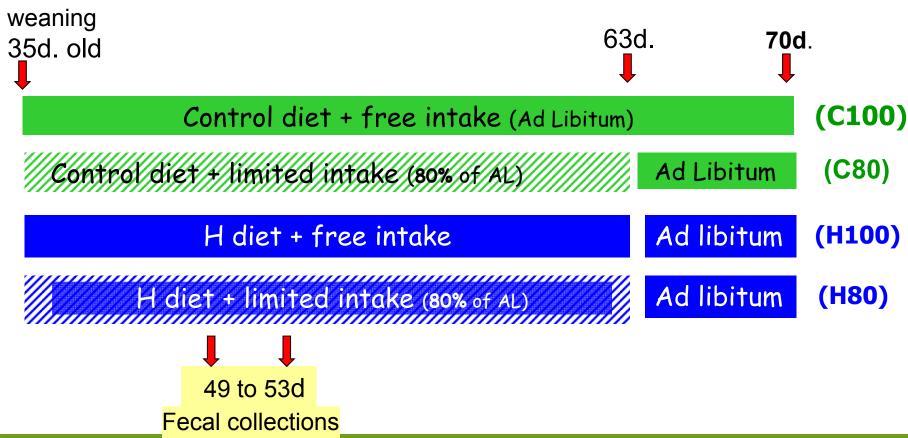
large variability among studies

Hypothesis

- Effect of the intake amount only ?
- Combined effect with digestible energy intake? Or diet composition.
- Interaction ?

Aim:

separate the effects of the ingested amount of those from energy intake



Experimental design

Model 2 X 2: 100 vs 80% et Control vs High Energy "H"

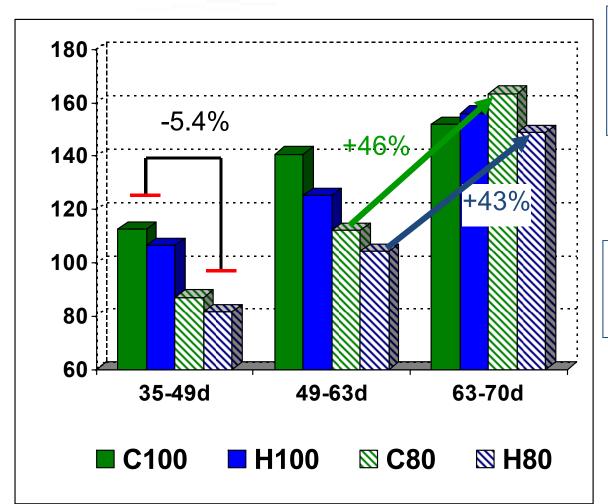
Trial1: 4 groups of 12 rabbits in metabolism cages

trial 2: 4 groups of 17 cages of 5 rabbits (intake and growth measurements)

Individual & total

Ingredients and chemical composition of the experimental diets

	Control	High energy	<u>y</u>
Ingredients (g/kg)			Starch vs lipids
Wheat	115	60	+ iso-ADF
Barley	115	60	· 130 AD1
Wheat bran	190	190	
Soya bean meal	40	115	
Sunflower meal	160	140	
Alfalfa	190	190	
Wheat straw	68	63	
Sugarbeet pulp	100	100	
Vegetable oil	0	60	
Minerals + vitam.	22	22	
Chemical composition (g/kg)			
Crude protein (N X 6.25)	148	164	
Starch	141	91	
Crude fat	19	72	
Neutral detergent fibre	337	345	
Acid detergent fibre	169	157	

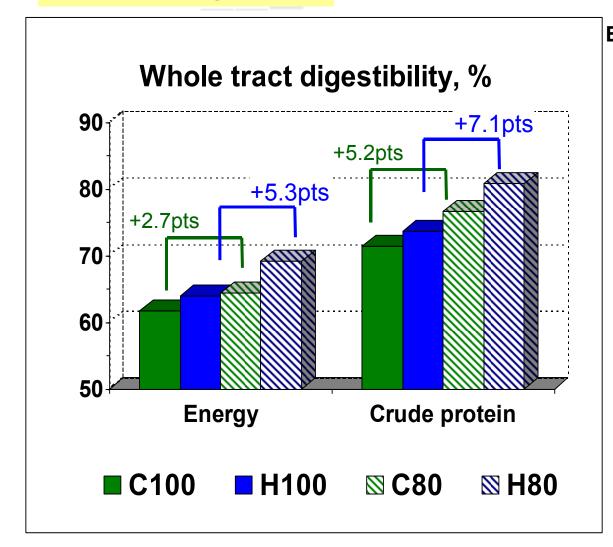


Results & discussion

Control vs High energy

Starch vs lipids / iso-ADF

Feed intake (trial 2)



From 35 to 49d feed intake regulated according to dietary DE concentration

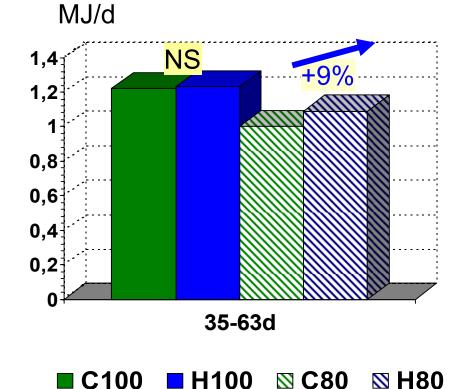
Back to free intake: sharp increase of intake for previously restricted rabbits

Nutrient digestion

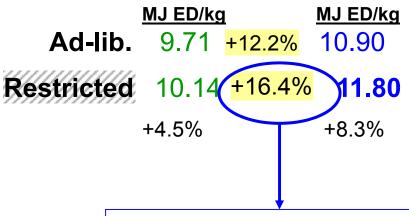
Diet Intake D x I

Energy: <0.001 <0.001 0.012

C.P.: <0.001 <0.001 0.22


Energy digestion improved by restriction, but more with HE diet

Protein digestion **highly** improved by restriction, without interaction with diet composition


Energy intake

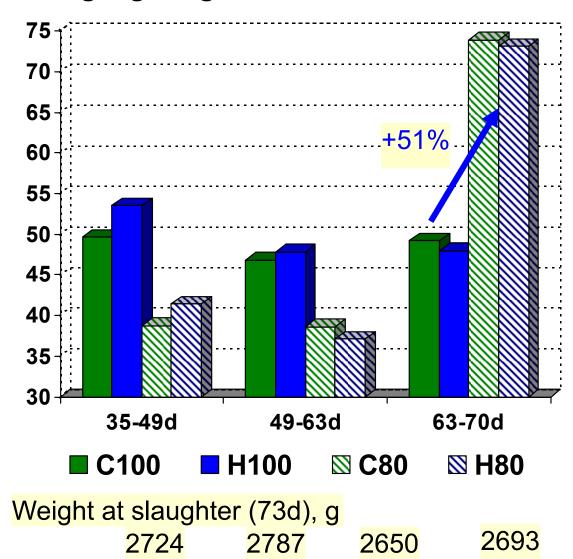
Intake of digestible energy*

Diets

Control vs High energy

Higher digestive efficiency for the restricted rabbit with a high energy diet

Interaction energy concentration and energy digestion?


^{*:} trial 2, measured on 17 cages of 5 rabbits per group

Growth (trial2)

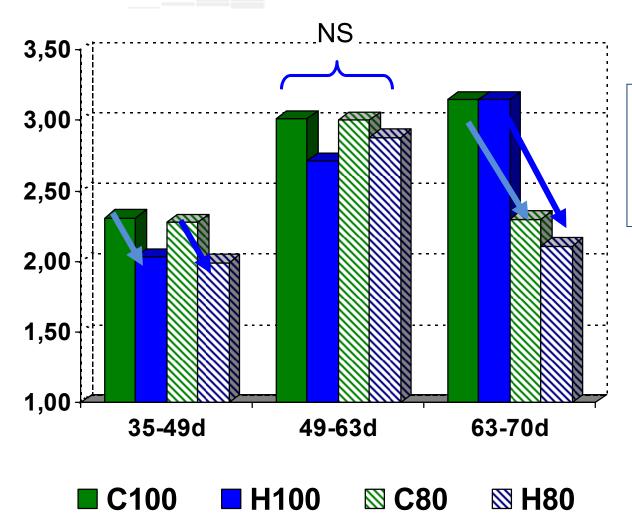
Control vs High energy

Weight gain, g/d

35-49d Intake level = ** [Energy] = ** 49-63d

63-70d

[Energy] = NS


Intake level = **

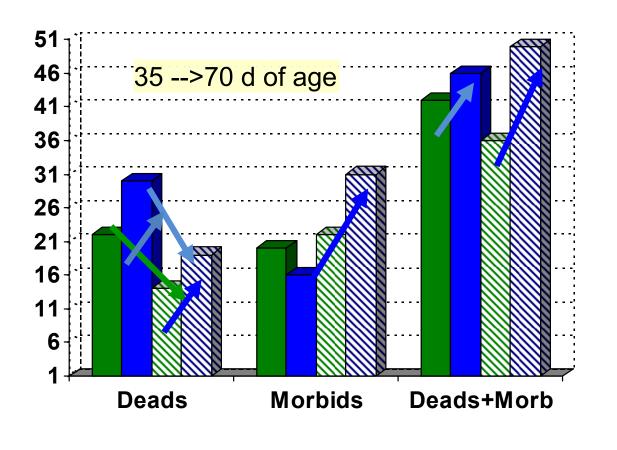
[Energy] = NS

Intake level: *** High compensatory growth

Feed conversion (trial2)

Control vs High energy

35-49d intake level; no effect


63-70d [Energy] = **NS**

Intake level: ***
compensatory
growth

Health status (trial2)

Control vs High energy

Number of cases, for 85 rabbits per group (17 cages)

Mortality:

Lower for "80" restricted groups (P=0.02)

Mortality:

[Energy] : unfavourable effect (P=0.11) ??

Morbidity:

Higher number of cases, only for high energy + restriction = interaction?

■ C100 ■ H100 🖾 C80 🖾 H80

49-63d: high incidence of cases

Health risk (dead+morb)
[Energy] : unfavourable
effect (P=0.05)

CONCLUSIONS

Limited intake level (-20% from AL) for 4 weeks =

- 1. Better digestion and feed efficiency
- 2. lower growth almost compensated at end of fattening with <u>one week of free intake</u>
- 3. lower mortality

High dietary energy concentration:

- Interaction "energy level" X restriction for energy digestion
- Reduce the "negative impact" of a limited intake on growth
- Impact on digestive health ?? Interaction

Thank you for your attention

Sylvie Combes

Laurence Fortun-Lamothe

Our team SYSED / NED

Laurent Cauquil

Olivier Zemb

Carole Bannelier

Muriel Segura Bay

Valérie Lozano

Gabinaud

Christine Julien

Corine Bayourthe

Viviane Batailler

Francis Enjalbert

Géraldine Pascal

Annabelle Troegeler

Marie Luce Chemit