

Feed Utilization in Nordic Cattle FUNC

Just Jensen Aarhus University Center for Quantitative Genetics and Genomics

Partners

- MTT Agrifood, Finland
- University of Helsinki, Finland
- Norwegian University of Life Sciences, Norway
- Swedish University of Agricultural Sciences, Sweden
- University of Copenhagen, Denmark
- Aarhus University, Denmark
- Knowledge Centre of Agriculture, Denmark

Funding

Primarily funded by the dairy industry in the participating countries!

- Different funding models and rules
- Different reporting requirements
- Different degree of public support
- Different possibilities for cofunding from the involved universities
- Difficult (~impossible) to move funding accross country borders

However:

- Strong support form the Nordic Dairy Cattle R&D Committee (NDC)
- General and strong interest in collaboration for the benefit of dairy farmers
- ≻The program runs in the period 2013-2016

Project Goals

- Joint use of research facilities
- Better definitions of feed efficiency
- Develop and test indicators of feed efficiency
- Genomic predictions for feed efficiency
- Selection strategies for feed efficiency
- Nutrional strategies for improving feed efficiency
- Development of systems models to improve overall feed efficiency

Background

Alternative definitions of Feed Efficiency (FE) and proxy FE indicator traits.

Milk yield, Energy balance, fertility, disease traits...

Definitions of feed efficiency

- Digestibility
- Alternative expressions of efficiency
- Indicator traits
- Sensor technology

Development of a cow-specific organic matter digestibility

prediction method based on NIRS scans

Terhi Mehtiö

Raw data

Organic matter digestibility based on NIRS scans

Lactation stage	N	Mean	SD	Min	Мах
All	185	740	21.0	695	812
50 DIM	47	736	28.5	695	812
150 DIM	47	732	16.9	704	765
250 DIM	47	737	15.8	704	769
Dry period	44	755	11.9	732	782

Repeatability estimates between lactation stages (composite samples of 47 cows)

- PROC VARCOMP, SAS
- Model
 - Fixed effects
 - Feeding level
 - Lactation stage
 - Week of collection
 - Random effect
 - Animal

-	σ^2	2 animal	
r_a	_	σ^2_{anin}	$_{mal}+\sigma_{arepsilon}^{2}$

	σ^2_{animal}	σ^{2}_{error}	r
OMD	37.87	119.79	0.24
OMD 50, 150	56.91	110.50	0.34
OMD 150, 250	42.00	100.76	0.29
OMD 250, 350	11.18	113.46	0.09

Conclusions

- Near infrared reflectance spectroscopy provides an opportunity to measure cow-specific organic matter digestibility from fecal samples
- Repeatability estimates indicated that improving dairy cattle digestibility by animal breeding is possible
- Further studies are still needed to make the method practically feasible
 - How many samples per week is the minimum?
 - In which lactation stage the samples should be collected?

Rumination activity in relation to DMI and feed efficiency

FUNC meeting 3rd March 2014, Lövsta, Sweden Malene Vesterager Byskov

Rumination activity - 2

• Rumination activity – how?

AARHUS

UNIVERSITY

 Regular pattern of jaw movements compared to eating activity

Rumination sensor - 1

• Rumination sensor

AARHUS

UNIVERSITY

- Records rumination time by sound of rumination pattern
- Sensor placed dorsally on the left side
- Detection of heat and diseases
- Recording of activity in the same sensor for heat detection
- Records rumination time in min per 2h intervals – 12.00.00 – 14.00.00
- Daily rumination time sum of 12 2h intervals over 24h initiated at midnight

Repeatability

• Repeatability

 $-t = \sigma_{cow}^2 / (\sigma_{cow}^2 + \sigma_e^2)$

- 131 Holstein cows and 51 Jersey cows
- For all cows between 0 400 DIM in 1. 3. parity r = 0.77

DIM	0 – 50	50 – 100	100 – 150	150 – 200	200 – 250	250 - 300	300 - 350	350 - 400
t	0.76	0.81	0.84	0.86	0.84	0.75	0.77	0.76

DMI and Rumination time - 1

- DMI and rumination time
 - Weekly averages of DMI and rumination time
 - 1,047 registrations from 110 Holstein cows and 42 Jersey cows

Methane mesurement at MTT with empahasis on Photoacoustic Infrared Spectroscopy Technique

MTT

E. Negussie, P. Mäntysaari, E. A. Mäntysaari and M. Lidauer MTT Agrifood Research Finland Biometrical Genetics, 31600 Jokioinen

Introduction

Enteric methane main source of Methane(CH₄)

Accounts for 29% global CH₄ production Contributes to global warming

Animal scientists – loss of feed energy

Ruminants lose 2-12% GE as CH₄

Mitgation of CH₄

Nutritional & environmental benefits

Partitioning of dietary gross energy intake into different energy pathways Xue et al. (2011)

TECHNIQUES

Tedious & time consuming

Slow/ Expensive

Difficult & labour intensive

Techniques so far not suited for large scale measurements a requisite for genetic studies !

Data

- from ~100 cows
- Continuous 24/7 methane as well as intake and production measurements
- part or whole lactation CH4 measurements

Traits	Mean	SD	r
CH4p (l/d)	462	81	0.40
CH4g (g/d)	330	58	0.40
CH4g/kg milk	13.5	3.8	0.41
CH4GE%	5.7	0.9	0.32

Daily Mean and SD of CH4 output traits

Genetic of Feed efficiency

- Genetic variation
- Relationships among traits
- Indicator traits
- Genomic information

PhD project

Genomic and Phenotypic Indicators of Feed Efficiency

Bingjie Li

Supervisors: Britt Berglund (SLU) Peter Løvendahl (AU) Freddy Fikse (SLU) Jan Lassen (AU) Goutam Sahana (AU)

Materials & Methods

Animals

- 830 primiparous cows: 473 Holstein + 215 Jersey + 142 RDC
- Feed: a total mixed ration (TMR) ad libitum

• Recording

- A weekly record of DMI based on the average of daily DMI
- DMIs over 24 lactation weeks used in this study

• Pedigree

A combined pedigree consisting of 15731 cows from Sweden and Denmark

Results & Discussion

Repeatability and Heritability

- Heritability for DMI: 0.16 to 0.35
- Early lactation: Large residual variance, low heritability for DMI.

Table 1. Number of animals, mean, standard deviation (SD), heritability (SE in brackets),
and repeatability for daily DMI (kg) at different lactation stages.

Week	No. of	Mean	SD	Heritability	Repeatability
	animals				
1-4	721	13.38	3.38	0.16 (0.05)	0.26
5-8	708	17.16	2.83	0.32 (0.09)	0.69
9-12	698	18.51	2.93	0.32 (0.09)	0.69
13-16	652	18.97	2.92	0.25 (0.09)	0.77
17-20	643	19.34	3.07	0.35 (0.09)	0.73
21-24	634	19.54	3.15	0.32 (0.10)	0.80

Conclusions

- Heritability for DMI varied across lactation stages with moderate estimates.
- The beginning of lactation has the lowest heritability, indicating low response to selection for DMI from early lactation.
- A weak genetic correlation between the beginning and mid lactation suggests <u>a different genetic basis for DMI along lactation</u>. Adjacent lactation stages are highly genetically correlated.

Associated projects

- REMRUM (Denmark)
- Green Dairy (Finland)
- Feed Mileage (Norway)
- Global DMI Initiative (Several)
- Applications submitted:
 - CONVERSION, EU, 22 partners
 - REFFIKO, Denmark

Scientists Involved

Ahvenjärvi Seppo (MTT), Britt Berglund, Egil Prestløkken, Enyew Negussie, Esa Mantysaari, Freddy Fikse, Goutam Sahana, Gunnar Klemetsdal, Haja Kadarmideen, Jan Bertilsson, Jan Lassen, Jarmo Juga, Juha Nousiainen, Just Jensen, Kevin Shingfield, Laura Nyholm, Louise Dybdahl Pedersen, Malene Vesterager Byskov, Martin Lidauer, Martin Riis Weisbjerg, Mehtiö Terhi, Mette Krogh Larsen, Mikaela Patel, MikkoJ. Korhonen Minna Toivonen Morten Kargo, Odd Magne Harstad, Ole Højberg, Pekka Huhtanen, Peter Lund, Peter Løvendahl, Päivi Mäntysaari, Rinne Marketta, Sairanen Auvo, Theo Meuwissen, Timo Sipiläinen, Torsten Eriksson, Troels Kristensen, Tuomo Kokkonen.

Summary

- Joint Internordic project on Feed Utilization in Dairy Cattle (FUNC)
- Better definition of feed efficiency
- Development of indicators
- Development of selection tools
- Development of better feeding strategies
- Economic evaluation of different strategies
- Early results are promising