## Identifying and monitoring pain in pigs and ruminants

- A. Prunier, INRA France
- M. Kluivers-Poodt, WUR, NL
- L. Mounier, Vet-Agro Sup, France



LIVESTOCK





## **Definition of pain**

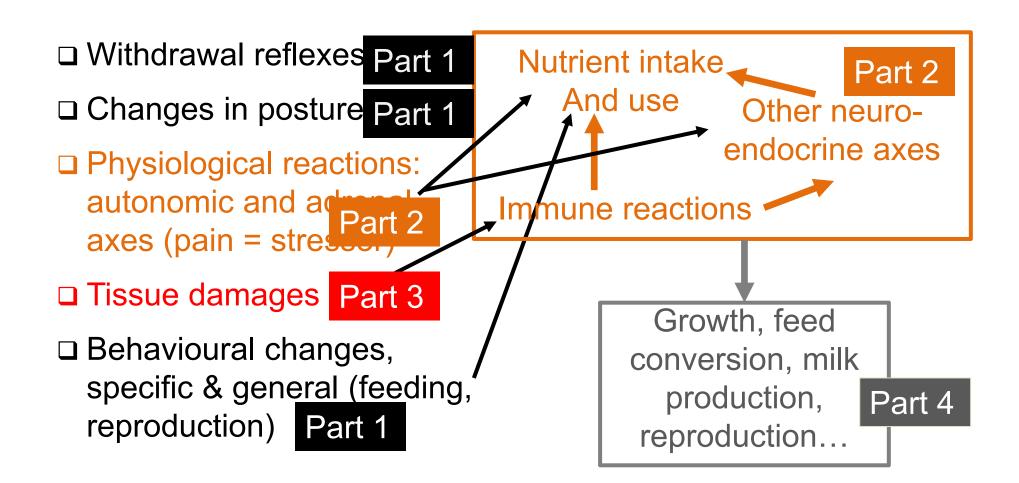
## In human (IASP)

An unplea ce Complex phenomenon associate e, or described that includes sensory, In anim emotional and cognitive An aversi components represent lage or threat to t he animal's physiology and behaviour to reduce or avoid damage, to reduce the likelihood of recurrence and to promote recovery



## How to identify and monitor pain ?

## ✓ In human


 The best evaluation of pain is self-report, on the basis of oral or written communication (Herr et al., 2006)

## ✓ In animal

- No self report, use of indicators that can be detected by external observers
- These indicators are based on phenomena tightly related to pain
- They should be valid (meaningful), sensitive, reproducible and feasible (for research ≠ on farms)



## Phenomena related to pain



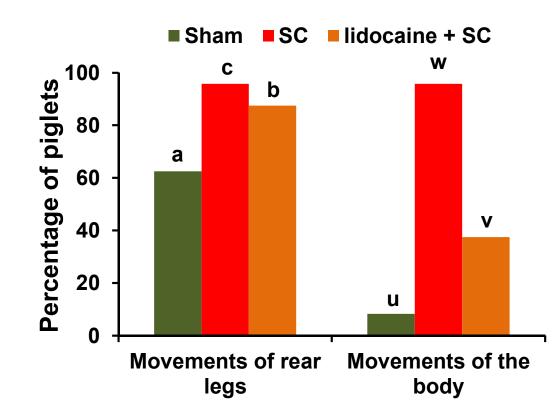


### Part 1. "Behavioural" indicators

#### **Five categories:**

- 1. Withdrawal reflexes, avoidance and defence behaviours
- 2. Vocalisations, facial expression
- 3. Behaviours directed towards the painful area
- 4. Postures and behaviours to avoid stimulation or to protect the painful area
- 5. Changes in the general behaviour




## Withdrawal, avoidance, escape, defence

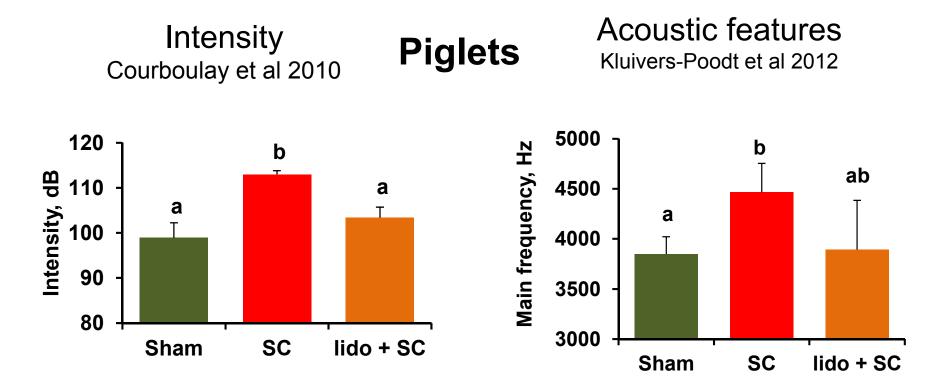
Withdrawal reflexes: involuntary and rapid movements, mediated by a reflex arc synapsing in the spinal cord, avoid a noxious stimulus: prick, burn, palpation of a painful area (kick)...

**Avoidance, trials to escape, defence movements d**uring castration in pigs and sheep, heat cauterisation of the horn-producing area (= dusbudding) in cattle...



#### Behaviour of pigs during surgical castration 24 pigs/group,4-6 days Courboulais, Hémonic, Gadonna, Prunier et al 2010






Surgical castration induces movements, local anaesthesia reduces the impact



## Vocalisations

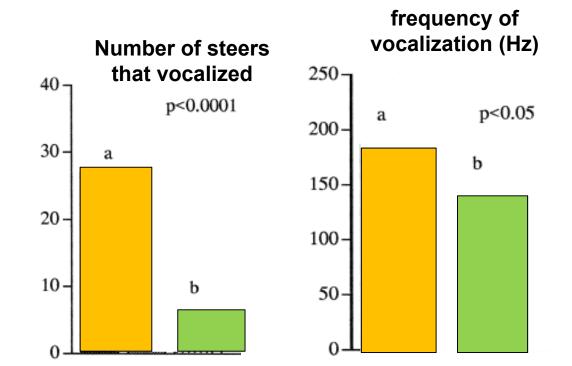
The number and features of vocalisations can be modified in case of painful situations (numerous studies in pigs and ruminants reviewed by Watts and Stookey 2000; Manteuffel et al 2004)





## **Vocalisations in bovines**

Response of steers to iron branding (Watts & Stookey 1999)




Maximum



Restraining + Branding

Restraining



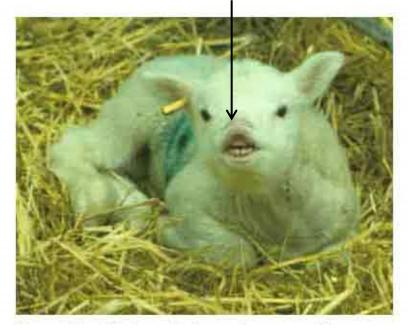


## Vocalisations



- Animals may vocalise during non-painful handling (no difference between the control and painful situation in some studies: Lay et al., 1992a; Schwartzkopf-Genswein et al., 1998)
- ✓ After the acute response to a painful intervention, monitoring of vocalisations is of little efficacy to detect pain (Molony et al., 2002; Grant, 2004).




## **Facial expression**

Animals suffering from pain may express changes in facial expression (Kent & Molony, http://www.link.vet.ed.ac.uk/animalpain/)

Ears back and wide open  $\$  eyes in calf with bloat

Lip curling following rubber ring castration





Under scientific evaluation in domestic animals



## Behaviours towards the painful area

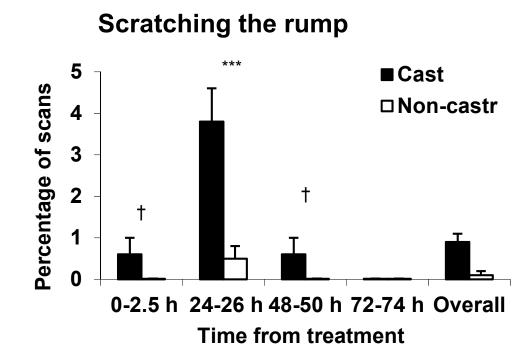
- □ Licking: calves after tail docking (Eicher et al 2000) or castration (Molony et al 1995)
- Scratching/rubbing: rubbing the head with front legs after disbudding in veals (Morisse et al 1995); scratching of the scrotum area on the floor after castration in pigs (Hay et al 2003)
- Teeth champing after teeth clipping in pigs (Noonan et al 1994)

#### Etc.

Allow masking painful stimuli by tactile ones, « gate control » theory (Melzack, 1996)



## Postures and behaviours to avoid stimulation or to protect the painful area


- Lameness: numerous examples with various scales of evaluation
- Lying on the belly : sheep after castration (Molony et al 2013)
- □ Lying on the side with extended legs: sheep (Molony et al 1993) and pigs (Hay et al 2003) after castration
  - Etc.

"Aim": limit pressing, stretching damaged areas

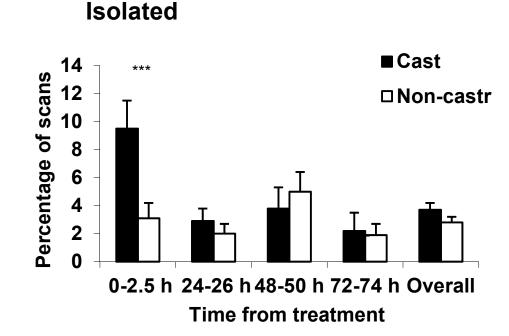


## Scratching the rump after castration in pigs

(16 or 24 pigs/group, 5-7 days of age, Hay et al 2003)

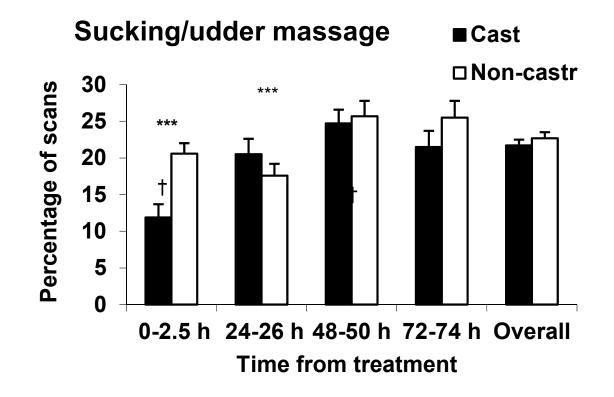





## Changes in the general behaviour

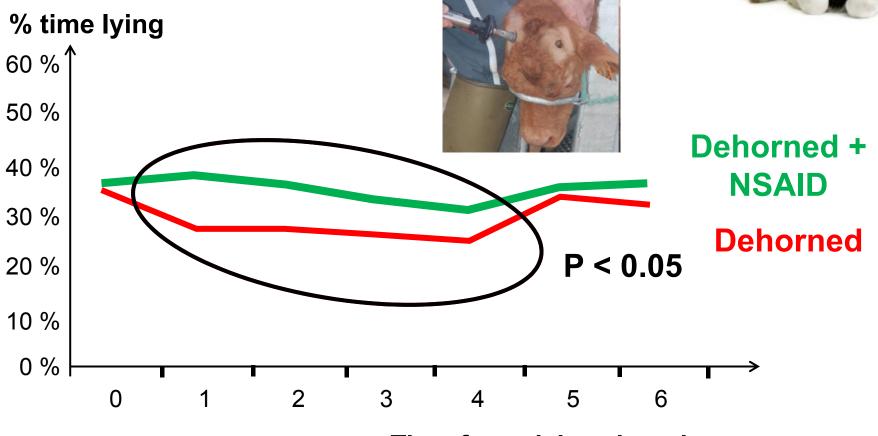
- Signs of agitation: jumping, kicking, rolling on the soil... veals and lambs after castration combined or not with tail docking (Molony et al., 1995; Grant, 2004)
- Being motionless, awake inactive: pigs after castration (Hay et al 2003) or calves after dehorning (Theurer et al 2012) 'statue standing' after rubber-ring castration in lambs (Molony et al., 2002)
- Social isolation, behavioural desynchronisation: pig after castration (Hay et al 2003)
- Reduction in feeding behaviour after castration in pigs (Hay et al 2003) or calves (Robertson et al., 1994)

Etc...




## Change in social behaviour after castration in pigs (16 or 24 pigs/group, 5-7 days of age, Hay et al 2003)






## Change in sucking behaviour after castration in pigs (16 or 24 pigs/group, 5-7 days of age, Hay et al 2003)





## Change in general activity after dehorning in calves (Theurer et al 2012)



Time from dehorning, days



## Conclusion on "behavioural" indicators

#### Limits

- Lack of validity: yes and no (take the context into account)
- Lack of reproducibility: no if good description and training

#### **Advantages**

- ✓ Non invasive
- ✓ Can be applied directly in commercial farms
- ✓ Sensitive
- $\checkmark\,$  Some are specific



## Part 2-Physiological indicators

- ✓ Adrenal and sympathetic axes
- ✓ Immune system
- Metabolic and physiological consequences of stimulation of the stress response axes and of the immune system



#### **Components of the axis**

- □ hypothalamus (CRH)
- □ pituitary (ACTH)
- □ Adrenal cortex (cortisol)

#### **Possible measures:**

- □ ACTH (blood)
- □ cortisol (blood, saliva)

Serial blood sampling through permanent catheter

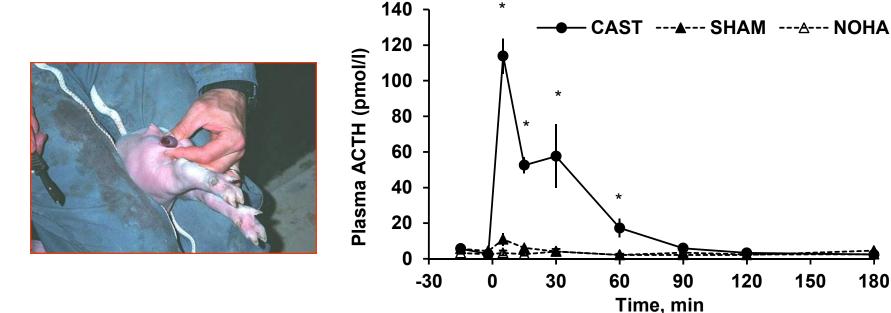


Occasional blood sample by venipuncture





#### Saliva collection on a gilt



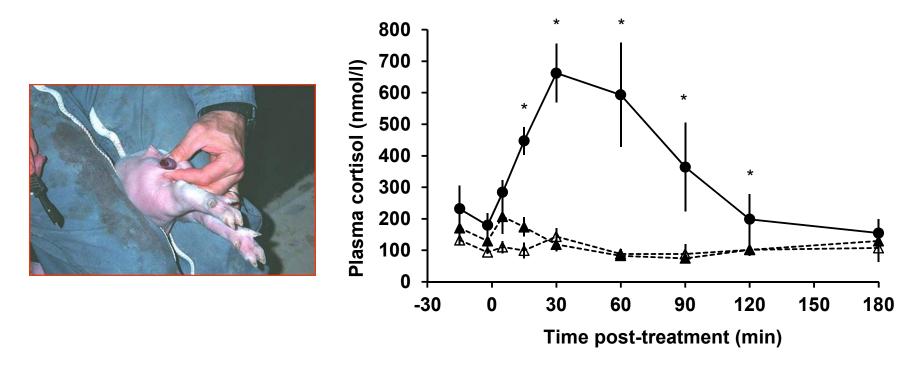

## Cotton bud and tube for centrifugation





#### Pituitary response of pigs to surgical castration (6 pigs/group, 5-7 days, Prunier et al 2005)

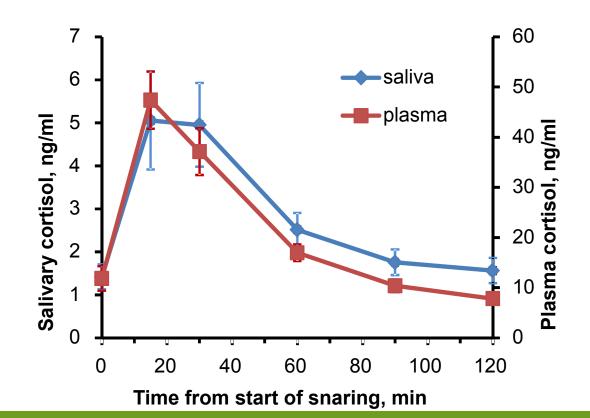





Prunier, Kluivers-Poodt, Mounier, EAAP 2014

150

180


Adrenal response of pigs to surgical castration (6 pigs/group,5-7 days, Prunier et al 2005)



#### Slower, less « intense » but of longer duration



Comparison of cortisol variation in plasma and saliva after a painful stimulus (snaring for 5 min) in gilts (8 pigs/group, Merlot et al 2011)



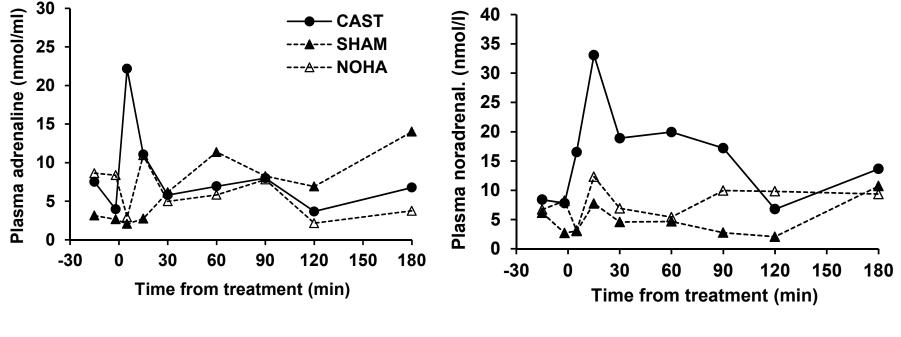
## Sympathetic axis

#### **Components of the axis**:

Nerves and ganglia, the adrenal medulla (80% adrenalin, 20% noradrenalin)

#### **Possible measures:**

Adrenalin (blood)Noradrenalin (blood)


Blood sampling without stress via a catheter





## Sympathetic axis

Plasma catecholamine response of pigs to surgical castration (6 pigs/group,5-7 days, Prunier et al 2005)



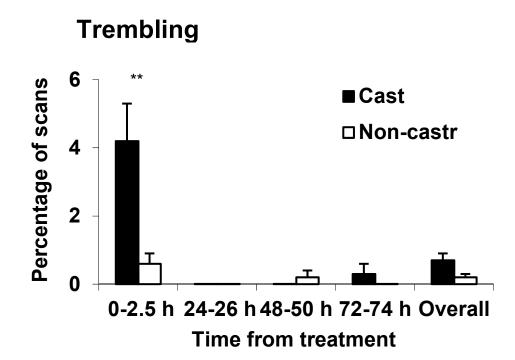
Rapid and transient

Longer duration



# All the effects of acute stress (fight-or-flight response)

- ▲ Blood nutrient concentrations: glucose, lactate, NEFA
- ▲ Cardiac and respiratory rhythms
- ▲ Blood pressure
- ▲ Internal body temperature,
- (Transient  $\mathbf{\nabla}$ )  $\mathbf{\Delta}$  or eye temperature
- ▲ Diameter of the pupil
- ▲ Sweat secretion (not in pigs), electric conductivity of the skin


Muscular trembling

#### Well adapted to acute pain



## **Trembling after castration in pigs**

(16 or 24 pigs/group, 5-7 days of age, Hay et al 2003)





## **Conclusion on physiological indicators**

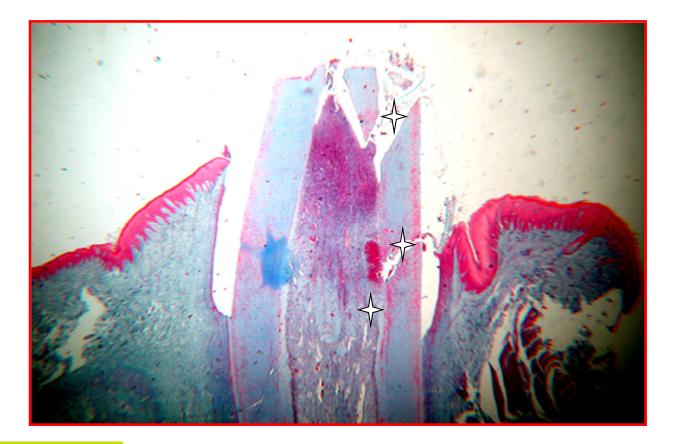
### Limits

- □ Possible confusion with any other source of stress
- □ Are often invasive and need laboratory analyses
- □ Very few can be used in commercial farms

#### **Advantages**

- Sensitive and quantitative
- Ideal for comparing experimental treatments (identify practices that may generate pain, measure the influence antalgic treatments...)




# Part 3-Injuries and other lesional indicators

- Based on analogy (physiology, anatomy) between human and domestic animals: painful lesions in human can be considered to be painful in animals
- Most frequent lesions are sources of pain: bone fractures, tissue tearing, inflammation, abscesses, neuromas...
- Detected by clinical exam of live animals or by histological analysis

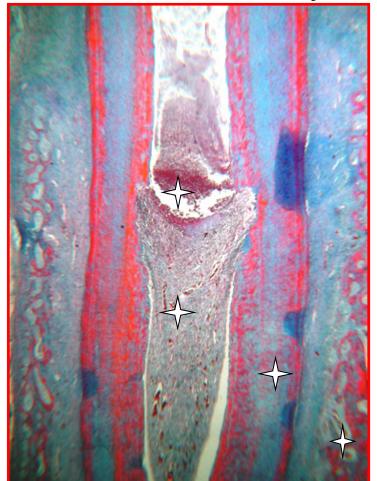


## **Injuries and other lesional indicators**

Piglet's tooth cut at 2 days of age and observed at 7 days (Hay et al, 2004)



Pulp lesion, dentin debris


Fracture

Inflammation (pulpitis)



## Injuries and other lesional indicators

Piglet's tooth cut at 2 days of age and observed at 28 days (Hay et al, 2004)





**Dental pulp** 

Dentin

Maxillary tissue



## Conclusion on injuries and other lesional indicators

#### Limits

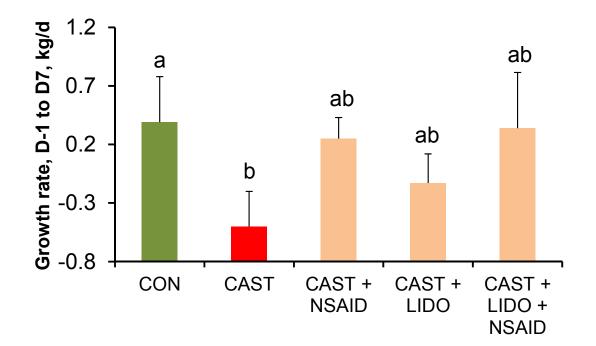
- □ A lesion is not always a source of pain
- Good conditions are necessary for observation of macroscopic lesions: space, light, cleanliness
- Histology analysis needs invasive sampling and laboratory analyses

#### **Advantages**

- □ Allows to locate some sources of pain
- Can be used in commercial farms when lesions are external
- □ Can be used on slaughter lines



# Part 4-Indicators related to production performance


Due to its effects on behaviour, adrenal and sympathetic axes, other neuroendocrines axes, pain can influence performance (especially if chronic):

- ▼growth rate
- ▼feed conversion
- ▼reproduction performance: oestrus, fertility, prolificacy
- ▼ milk production



## **Performance indicators**

Influence of surgical castration and pain relief on the growth rate in calves (n= 8/group, Earley and Crowe, 2002)



In piglets: no clear effect of castration and of pain relief: Hay et al 2003, Kluivers-Poodt 2012



## **Conclusion on performance indicators**

#### Limits

Low sensitivity (effects can be observed if pain is very intense and/or prolonged) and their validity may be questioned since numerous causes other than pain can be at the origin of performance decreases

#### **Advantages**

- □ Can be used in commercial farms
- Matter farmers that are motivated for a prompt reaction to improve performance



## General conclusion

- In commercial farms : simple indicators, open to direct interpretation
  - Main indicators: behaviour, clinical exam and performance
  - Behaviour: early detection allows early action
  - A single (behavioural) can be sufficient but combining several indicators increases probability of detection
- For experimental purposes: more complex indicators can be used, numerous exist (behaviour, physiology...)



## General conclusion

- Progress has been achieved in many farms but more progress remains to be made
- Convince farmers that improving welfare of the animals can be beneficial for:
- □ Health and performance of the animals
- Image of their production
- Greater job satisfaction/more positive selfimage
- **u** ...



### Thanks for your attention!



