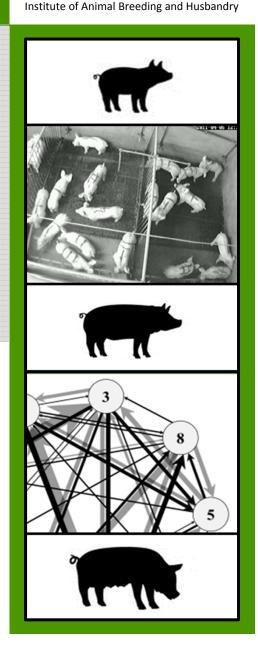


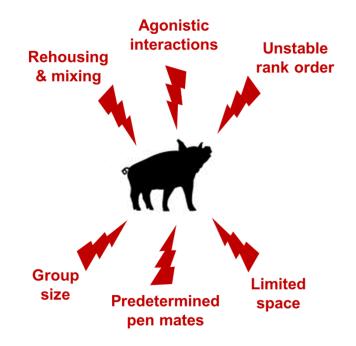
Faculty of Agricultural and Nutritional Science

CAU

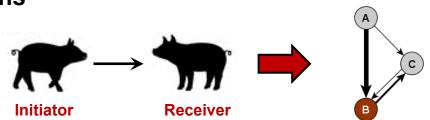

Christian-Albrechts-University Kiel

Social network analysis – Investigation of agonistic behaviour in pig production

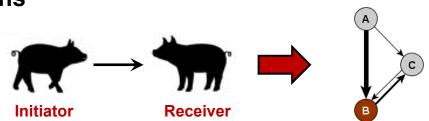
Kathrin Büttner, Katharina Scheffler and Joachim Krieter


Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany

65th Annual EAAP Meeting Copenhagen, Denmark, August 25th to 29th, 2014 Session 54, abstract number 18641, kbuettner@tierzucht.uni-kiel.de

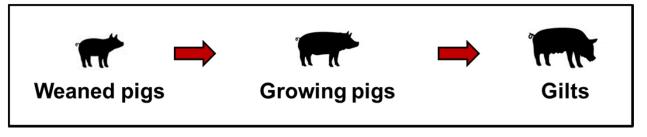


- Mixing of unacquainted animals is a standard procedure in commercial pig production
 - \rightarrow Unstable social structures
 - \rightarrow Increased agonistic interactions in order to establish a new rank order
- Agonistic interactions negatively influence
 - \rightarrow Animal health
 - \rightarrow Animal welfare
 - \rightarrow Production parameters



- Network analysis
 - \rightarrow Characterization of the structures of social relationships
 - \rightarrow Knowledge about formation and development of behavioural patterns
- Network view of agonistic interactions
 - \rightarrow Nodes: Individual animals
 - \rightarrow Edges: Agonistic interactions

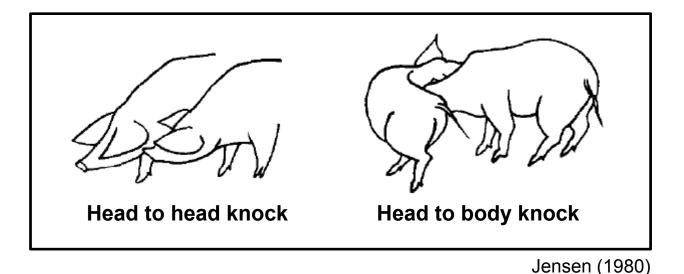
- Network analysis
 - \rightarrow Characterization of the structures of social relationships
 - \rightarrow Knowledge about formation and development of behavioural patterns
- Network view of agonistic interactions
 - \rightarrow Nodes: Individual animals
 - \rightarrow Edges: Agonistic interactions



• Aim of the study

- \rightarrow Development of the network parameters over three different age levels
- \rightarrow Impact of the network position in previous rehousing and mixing situations?

- **Observation period:** December 2010 to August 2012
- **Research farm "Hohenschulen"** (Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel)
- Record of **agonistic interactions** of pigs in three different age levels



- The video observation started **directly after rehousing and mixing** for two days
 - → 7,020 agonistic interactions between 1,354 animals
 - \rightarrow **149 animals** were tracked the whole period from weaned pig to gilt

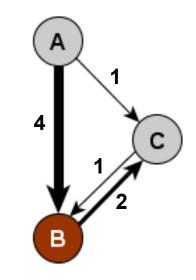
- Definition of an agonistic interaction
 - Start: Physical contact of one animal towards another (> 1 sec)
 <u>Examples</u>: Head to head knocks, head to body knocks,
 parallel or inverse pressings, biting
 - End: Submissive behaviour of an involved animal

Examples: Turning away, displacement from a location, fleeing

- Centrality parameters
 - \rightarrow Node level
 - \rightarrow Description of the individuals' position in the network
 - \rightarrow "Which are the most central or important nodes in the network?"

General network properties

- \rightarrow Network level
- \rightarrow Description of the whole network structure
- \rightarrow Comparison between different networks


Materials & Methods

Results

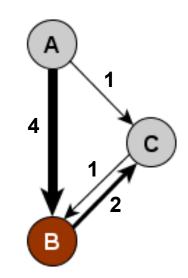
Centrality parameters

Introduction •

- Degree centrality
 - → <u>Unweighted</u>: Number of opponents
 - \rightarrow <u>Weighted</u>: Number of fights
- In-degree centrality
 - \rightarrow <u>Unweighted</u>: Number of attackers
 - \rightarrow <u>Weighted</u>: Number of received fights
- Out-degree centrality
 - \rightarrow <u>Unweighted</u>: Number of attacked opponents
 - \rightarrow <u>Weighted</u>: Number of initiated fights

Centrality parameters

•	Deg	Animal B	
	\rightarrow	Unweighted: Number of opponents	2
	\rightarrow	Weighted: Number of fights	7


Introduction • Materials & Methods • Results • Discussion & Conclusion

• In-degree centrality

\rightarrow	Unweighted: Number of attackers	2
\rightarrow	Weighted: Number of received fights	5

Out-degree centrality

\rightarrow	Unweighted: Number of attacked opponents	1
\rightarrow	Weighted: Number of initiated fights	2

Materials & Methods

Results

General network properties

Introduction •

Density

- → Proportion of all present edges in comparison to the number of all possible edges (Range: 0 to 1)
- Clustering coefficient
 - → Extent two opponents of an animal are opponents themselves
 (Range: 0 to 1)
- Degree assortativity
 - → The tendency of an animal to fight preferably with other animals which have a similar degree compared to their own (Range: -1 to 1)

Median number (range) of animals and fights in each age level

Introduction - Materials & Methods - Results -

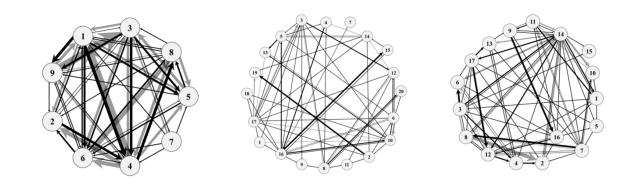
	Weaned pigs 🛒	Growing pigs 📻	Gilts
Animals / Pen	9 (6 - 11)	23 (20 - 25)	24 (18 - 29)
Fights / Pen	52 (18 - 280)	80 (44 - 120)	68 (38 - 118)
Degree			
Opponents / Animal (unweighted)	7 (0 - 16)	5 (1 - 18)	5 (0 - 22)
Fights / Animal (weighted)	12 (0 - 96)	5 (1 - 27)	5 (0 - 36)
In-degree			
Attackers / Animal (unweighted)	4 (0 - 8)	3 (0 - 11)	3 (0 - 11)
Received fights / Animal (weighted)	7 (0 - 51)	3 (0 - 16)	3 (0 – 17)
<u>Out-degree</u>			
Victims / Animal (unweighted)	3 (0 - 9)	2 (0 - 10)	2 (0 - 16)
Initiated fights / Animal (weighted)	5 (0 - 73)	3 (0 - 17)	2 (0 - 29)

Spearman rank correlation coefficients between in-degree and out-degree in

three different age levels

	Weaned pigs 帐	Growing pigs 📻	Gilts 🎆
In-degree – out-degree	0.70*	0.48*	0.61*
* p<0.05			

Spearman rank correlations of the centrality parameters between the age levels


	Weaned pigs - growing pigs	Growing pigs - gilts
Degree	0.19*	0.19*
In-degree	-0.02	0.07
Out-degree	0.27*	0.25*
* ~ <0.05		

* p<0.05

Median number (range) of the general network properties density, clustering coefficient and degree assortativity in each age level

	Weaned pigs 📌	Growing pigs 📻	Gilts 🎢
Density	0.45 (0.24 - 0.94)	0.13 (0.07 - 0.17)	0.12 (0.06 - 0.25)
Clustering coefficient	0.75 (0.29 - 1)	0.32 (0.14 - 0.50)	0.22 (0.05 - 0.56)
Degree assortativity	-0.25 (-0.78 - 0.15)	-0.10 (-0.37 - 0.24)	-0.19 (-0.34 - 0.14)

- Decrease of agonistic interactions with higher age level
 - \rightarrow Habituation effect
 - \rightarrow Development of new coping strategies
- Lower correlation coefficients between in-degree and out-degree in growing pigs and gilts
 - → More stable network position due to their increased familiarity and their experiences acquired from previous agonistic interactions
- Correlations between the out-degree over the three different age levels showed more stable results
 - \rightarrow Out-degree describes an active behaviour
 - \rightarrow In-degree depends on the aggression of the pen mates

- Decrease of density and clustering coefficient in older age levels
 - \rightarrow Learning process from previous fighting situations
 - \rightarrow Gained confidence acquired by previous success
- Negative degree assortativity in all three age levels
 - → Networks with a negative connotation show a smaller reciprocity than networks with a positive connotation (e.g. grooming, affiliation)

- Decrease of density and clustering coefficient in older age levels
 - \rightarrow Learning process from previous fighting situations
 - \rightarrow Gained confidence acquired by previous success
- Negative degree assortativity in all three age levels
 - → Networks with a negative connotation show a smaller reciprocity than networks with a positive connotation (e.g. grooming, affiliation)

Network analysis

- \rightarrow Characterization of individual position in agonistic interaction networks
- \rightarrow Development of network parameters over different age levels
- \rightarrow New insights in the formation and evolution of behavioural patterns

Thank you for your attention!

