

Book of Abstracts p. 435

Timing of transfer after mating influence dam cortisol and maternal care in farm mink

Jens Malmkvist & Rupert Palme

jens.malmkvist@agrsci.dk

Transfer to maternity unit

➤ Why? Clean delivery environment

Introduce distance between delivering mink

Cage/nest box prepared for kits

> When?

§ 23 "Breedings females should be boused from mid April and until weaning of kits/young in every second cage"

(Danish Ministry of Justice, 2006)

Mink farmers: variable times of transfer into delivery unit

Stress prior to delivery: negative impact

Malmkvist et al., Appl. Anim. Behav Sci. 2006; Malmkvist & Palme, Appl. Anim. Behav. Sci. 2008

Study aim: Influence of timing of transfer on

- Maternal stress
- Maternal care
- > Early kit vitality

Treatment groups

Time of transfer *relative to expected day of birth*

•	EARLY	Day -36	N=60
•	INTERMEDIATE	Day -18	N=60
•	ΙΔΤΕ	Day -3	N-60

In total 180 double-mated yearlings from one line of brown colour type, housed and feed identically

Time of transfer

EARLY

V V V

March -36

mating

INTERMEDIATE

April -18

LATE V

-3 **O**May

delivery

7.8% barren

N=166

Results

- Faecal Cortisol Metabolites (FCM)
 - sampled weekly before delivery + day 3 post partum

Non-invasive method for circulating cortisol validated in female mink

Malmkvist et al., Stress 2011

Faecal Cortisol metabolites (FCM), ng/g

EARLY	INTERMEDIATE	LATE	<u>P-value</u>
40.5 a	59.9 <mark>b</mark>	43.0 a	0.002
± 5.6	± 5.3	± 5.6	
76.4	47.5	75.3	0.054
± 14.2	± 13.8	± 14.2	
8.4 ± 0.3	7.9 ± 0.3	8.3 ± 0.3	0.39
	40.5 a ± 5.6 76.4 ± 14.2	40.5 a 59.9 b ± 5.6 ± 5.3 76.4 47.5 ± 14.2 ± 13.8 8.4 7.9	40.5 a 59.9 b 43.0 a ± 5.6 ± 5.3 ± 5.6 76.4 47.5 75.3 ± 14.2 ± 13.8 ± 14.2 8.4 7.9 8.3

Nest score

weekly from mating to day 2 postpartum

Nest score

Time relative to birth, days

In-nest climate

-Temperature

Nest building

Pregnant females

- Nest-build 1 month prior to delivery when given the opportunity
- Can relative quickly (< 1 day) build a full nest

In EARLY transferred females (vs. LATE)

Warmer nests postpartum
 offspring better protected against hypothermia
 during the early period critical for survival

Young survival

Among litters affected by kit mortality (N=92)

Live-born kits dying day 0-7 postpartum

EARLY: 28.9 %

INTERMEDIATE: 28.5 %

LATE: 42.7 % *P = 0.085*

Maternal care

Highly motivated behaviour

Kit-retrieval test day 5 - an indicator of maternal care

Malmkvist & Houbak, *Scientifur* 2000 Malmkvist & Palme, *Appl. Anim. Behav. Sci.* 2008

Role of kit vocalisation

Clausen et al., *Appl. Anim. Behav. Sci.* 2008 Brandt et al., *J. Exp. Biol.* 2013

Kit vocalisation P = 0.015

EARLY: 16.7 % a

INTERMEDIATE: 41.2 % b

LATE: 40.0 % b

Timing of transfer

EARLY *Day -36*

Warmer nests than group LATE
Fewer kits vocalising = fewer kits in need

- INTERMEDIATE Day -18
 Different cortisol profile over time
 Increased dam cortisol during weeks prior to delivery
- LATE Day -3
 Colder nests than group EARLY
 Increased kit mortality (tendency)

Treatment groups

In-nest climate

-Relative humidity, %

