

Achieving economic and socially sustainable climate-smart farming

Eileen Wall

SRUC, Edinburgh and ClimateXChange

Leading the way in Agriculture and Rural Research, Education and Consulting

Consumption patterns and demand for livestock

- By 2030 more:
 - 360m cattle & buffaloes^{24%}
 - 560m sheep & goats^{32%}
 - 190m pigs^{22%}
- Increasing productivity is the way to go
 - Developing vs Developed
- Poultry 163 vs 284 kg beef
- Sheep and ____ 1.1 vs 5.9 tonnes/yr milk goat meat Beef

Mitigation options for ruminant systems

Within the farm gate:

SRUC

What information do we need to examine mitigation potential

SRUC £/tCO2e 1,300 Expensive options, 650~ Width of each small emission savings 600 bar: abatement 550 potential Transition -500 costs start to win-win 450 increase more 300 Height of each rapidly Significant costbar: cost-150 effective emission effectiveness savings 100 50 **Carbon price** 80 40 60 140 -50 MtCO₂e -100 -150 -250

Marginal Abatement Cost Curves

What information do we need to examine mitigation potential of GENETICS

What information do we need to examine mitigation potential of GENETICS

		JUJC	
	Dairy	Beef	
Business as usual	Widespread uptake of national breeding goal genetic improvement	w penetration of genetic improved stock into production population	
Mitigation tools	 System efficiency Environmental efficiency Genomics 	 Increase penetration rate Improve accuracy of selection Select for feed efficiency Genomics 	
Area and applicability	All dairy farms	Increasing proportions of national beef	
Abatement rates	 Expected change in population based on different breeding goals, traits and genomics estimated (selection index theory) Impact on system wide GHG calculated using IPCC and PAS2050 Carbon Calculator 		
Mitigation option costs	Development of new systems of recording and genetic improvement, trade- offs from moving away from economic optimum		
Mitigation benefits	Profitability within a farm - Estimated per unit product and total emissions		

Expected responses for different breeding goals in dairy

Economic (£/cow/yr) GHG (kg CO2e/cow)

① System Efficiency
 ① 6.80
 ① 45.3

- Both options make money and reduce GHGs
 - Selecting for maximum GHG savings reduces profitability but increases GHG savings
 - unfavourable relationship of cow fitness
 - System efficiency (improving survival/fertility) but lower GHG savings

GHG mitigation for UK agriculture

Wall et al, 2010. *Animal*, 4, 366-376 MacLeod et al, 2011. *Agricultural Systems* 103, 198-209 Moran & Wall, 2011. *Animal Frontiers* 1, 19-25 Moran et al, 2011. *Journal of Agricultural Economics*, 62, 93-118

What information do we need to examine mitigation potential of GENETICS

	DITOC		
	Dairy	Beef	
Business as usual	Widespread uptake of national breeding goal genetic improvement	Low penetration of genetic improved stock into production population	
Mitigation tools	 System efficiency Environmental efficiency Genomics 	 Increase penetration rate Improve accuracy of selection Select for feed efficiency Genomics 	
Area and applicability	All dairy farms	Increasing proportions of national beef	
Abatement rates	 Expected change in population based on different breeding goals, traits and genomics estimated (selection index theory) Impact on system wide GHG calculated using IPCC and PAS2050 Carbon Calculator 		
Mitigation option costs	Development of new systems of recording and genetic improvement, trade- offs from moving away from economic optimum		
Mitigation benefits	Profitability within a farm - Estimated per unit product and total emissions		

Value of adding genomics

- Adding genomic information to beef improves current economic response
 - 14 21% improvement
- Adding novel traits to goal (target for genomics) improves it further
 - 29 45% across beef breeds
- Large training populations for novel traits
 - Including feed efficiency!
- The value propsition for genotyping to cover the range of breeds and systems

GHG mitigation potential from genetics

GHG Summary – Genetic Improvement <

- Genetic improvement , manure mgmt and nutrition are the main cost-effective options for the livestock sector that will reduce methane emissions
- Applying cost-effective livestock tools could reduce UK agriculture emissions by ~20% by the 2020s
 - Livestock genetics ~ 35%
- Increasing rates of genetic improvement in all efficiency sinks with known tools increases GHG savings by 1.45
 - Makes money for the industry (± 1.25 mill/mt CO₂e)

GHG mitigation for UK agriculture

Wall et al, 2010. *Animal*, 4, 366-376 MacLeod et al, 2011. *Agricultural Systems* 103, 198-209 Moran & Wall, 2011. *Animal Frontiers* 1, 19-25 Moran et al, 2011. *Journal of Agricultural Economics*, 62, 93-118

Consumption patterns and demand for livestock

- By 2030 more:
 - 360m cattle & buffaloes^{24%}
 - 560m sheep & goats^{32%}
 - 190m pigs^{22%}
- Increasing productivity is the way to go
 - Developing vs Developed
- Poultry 163 vs 284 kg beef
- Sheep and ____ 1.1 vs 5.9 tonnes/yr milk goat meat Beef

Total GHG mitigation potential from genetics with support

- Predicted favourable impact of climate change on land capability and grass/fodder yld
 - Big regional differences
- New crops/grasses of higher nutritive value
 - Higher value of by-products
- Sustainable intensification
 Land sharing vs. land sparing

t/ha

^{2020 2050 2080}

Total GHG mitigation potential from genetics with support

- Predicted favourable impact of climate change on land capability and grass/fodder yld
 - Big regional differences
- New crops/grasses of higher nutritive value
 - Higher value of by-products
- Sustainable intensification
 - Land sharing vs. land sparing

What information do we need to examine mitigation potential of GENETICS

		<u> </u>	
	DAIRY	BEEF	
Business as usual	Widespread uptake of national breeding goal genetic improvement	w penetration of genetic improved stock into production population	
Mitigation tools	 System efficiency Environmental efficiency Genomics 	 Increase penetration rate Improve accuracy of selection Select for feed efficiency Genomics 	
Area and applicability	All dairy farms	Increasing proportions of national beef	
Abatement rates	 Expected change in population based on different breeding goals, traits and genomics estimated (selection index theory) Impact on system wide GHG calculated using IPCC and PAS2050 Carbon Calculator 		
Mitigation option costs	Development of new systems of recording and genetic improvement, trade- offs from moving away from economic optimum		
Mitigation benefits	Profitability within a farm - Estimated per unit product and total emissions		

Beefdairy beef

Genetic corr	elations betwee Higher milk	en dairy and	
beer traits	production = less desirable carcass		SRUC
	conformation	CCON (1-15)	CFAT (1-15)
Milk (305d, kg)	0.22 (0.00	-0.40 (0.060)	-0.34 (0.062)
Fat (305d, kg)	0.23 (0.064)	-0.33 (0.062)	-0.33 (0.062)
Protein (305d, kg) 0.33 (0.062)	-0.26 (0.064)	-0.23 (0.064)
LS (lactation)	-0.07 (0.070)	0.05 (0.070)	0.06 (0.070)
SCC	-0.05 (0.067)	0.07 (0.067)	0.05 (0.067)
CI (days)	-0.04 (0.068)	-0.31 (0.064)	-0.25 (0.066)
NR (0/1)	-0.16 (0.067	0.10 (0.068)	0.23 (0.066)
	Better carcass		
	conformation =		
	better dairy		
	fertility		

More product from same feed resource and less total GHGs SRUC 2030s 2005 = 24.25 2030s **↓2-5%** MtCO₂eq **16%** 2030s 2030s 2005 **个29%** 个37% 2030s 2030s 2005 个17% milk milk milk

Costs of climate/stress resilience

By 2080s

- 10% decline in fertility (cycling)
 - 0.3 % mortality young animals

۲

- Costs of£80mill/annum
- Additional costs of heat wave (potentially £15.4 million per event)

We should consider and quantify for ...

- Wider land use > competition and cooperation
 - Identifying the GHG reduction options across systems within a region/country and across the globe
 - Wider economy drivers and interactions > Carbon trading in agriculture vs. elsewhere, food security
- Consequences of a changing climate (economic & wider)
 - Breeding for future systems and/or environmental envelopes?
 - Non-linear breeding goals incorporating risk?
 - Management options to overcome?

- Socio-economic framework helps to track impact of genetic change on livestock system and the multiple goals they deliver
 - Help value the wider social benefit genetic improvement
 - And/or value the trade-offs
- Appropriate genetic improvement is a sustainable tool to deliver multiple end-user priorities
- We need more information to quantify additional benefits (or costs) of selecting for multiple breeding goals

- FUNDERS: Defra, Scottish Govt, DECC, Eblex, DairyCo, EU.....
- COLLABORATORS: Davina Hill, Vera Eory, Michael MacLeod, Dominic Moran, Frank Kozlowski, Kairsty Topp, Bob Rees (SRUC), Yvette deHaas (WUR), Peter Amer (Abacus Bio), Anthony Lamb (Cambridge), Cameron Luddemann (Uof Melbourne)

EAAP 2016

67th Annual Meeting of the European Federation of Animal Science

Belfast 29 August – 1 Sept 2016

www.bsas.org.uk

