

Quantification of Environmental Impacts from Dairy and Beef Production on National Scale in Japan

Sawako Yamada*, Kazato Oishi, Hajime Kumagai, Hiroyuki Hirooka

Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan *Corresponding author e-mail: syamada@kais.kyoto-u.ac.jp

Introduction

- Dairy and beef production systems cause serious environmental impacts by such as nitrogen excretion and methane emission.
- There are few studies which estimate the environmental impacts from cattle production on national scale.

Objectives

- To develop deterministic simulation models of dairy and beef cattle.
- To estimate environmental impacts from dairy and beef production on national scale in Japan.

Materials and Methods

1. Targeted Cattle Categories and **Environmental Loads**

Cattle categories

Beef Production

- Japanese-Black (JB) breeding cows
- Japanese-Black (JB) fattening steers and heifers
- Holstein (Hol) fattening steers
- Japanese-Black × Holstein crossbred (F₁) fattening steers and heifers

Dairy Production

+Holstein (Hol) cows

Environmental Loads

- Nitrogen (N) excretion from urine and feces
- ◆Enteric methane (CH₄) emission

2. Model Overview

Individual level Input values

Growth Model

Actual daily gain DM and CP intakes

Environmental **Excretion Estimation**

N excretion and CH₄ emission per head per year

Actual Daily Gain Beef Cattle

◆Birth to weaning: Straight lines

◆Weaning to slaughter: Straight Gompertz curves for fattening cattle Brody curve for Breeding cow Dairy Cattle

- ◆0-50 days: Cubic function of days Figure 1. Simulated growth curves
- ◆After 50 days: Richard curve

for JB fattening steer and heifer

Fattening days (day)

Gomperz

Weaning

Weight 000

Dry matter (DM) and Crude Protein (CP) intakes

- ◆Metabolizable energy (ME) requirements of cattle were calculated using Japanese Feeding Standards.
- ◆DM intake were calculated based on the ME requirements.
- CP intake were calculated using national statics.

National level

Multiplying simulated outputs by total head in Japan

N excretion (kg/day)

 $N = (CP_{intake} - CP_{retained} - CP_{pregnant} - CP_{milk})/6.25$ CH₄ emission at the age of t (kg/day) (t = day)

 $CH_4 = (3.4 \times (\frac{t}{7}) - 1.2)/1000$ (t < 175)

 $CH_4 = 0.016 \times (-17.766 + 42.793DMI - 0.849DMI^2)/22.4 \ (t \ge 175)$

3. Input Values

Table 1. Assumed values of biological input variables of the model

Ca	attle Categories	Birth weight (kg)	Weaning weight (kg)	Age at weaning (days)		Slaughtered weights (kg)	Age at slaughter (days)		Calving interval (days)	Gestation length (days)	Lactation period (days)	Protein content in milk (%)	Age at first mating (days)	Culling	Total heads in Japan (heads)
JB	Fattening steer	34	165	120	800	751	890	-	-	-	_	-	-	-	650,500
	Fattening heifer	30	140	120	725	670	890	-	-	-	-	-	-	-	538,800
	Breeding cow	30	140	120	515	_	-	738	404	285	120	3.8	483	6	642,200
F ₁	Fattening steer	38	75	45	910	834	810	_	-	_	-	_	-	-	258,400
	Fattening heifer	34	62.5	45	860	750	810	_	-	_	-	-	-	_	240,700
Hol	Fattening steer	46	125	90	1100	761	640	-	-	-	_	-	-	-	384,540
	Cow	43	_	_	707	_	_	8167	436	280	370	3.22	459	4	1,012,000

Results

Individual level

Table 2. Simulated outputs of feed intake, N excretion and CH₄ emission

Cat	ttle categories	Feed intake (TDNkg/year)	N excretion (kg/year)	CH ₄ emission (kg/year)		
	Fattening steer	2153.4	55.4	66.8		
JB	Fattening heifer	2095.0	53.5	72.9		
	Breeding cow	2343.3	61.0	89.6		
	Fattening steer	2322.4	58.0	67.7		
Г1	Fattening heifer	2106.0	49.5	67.2		
ЦаI	Fattening steer	2126.1	52.2	60.7		
Hol	Cow	3517.8	65.9	97.5		

◆Japanese-Black breeding cow and Holstein cow categories excreted more N and CH₄ than fattening cattle.

National level

(a) N excretion

217.7 thousand tons 301 thousand tons (Nishio, 2003)

Figure 2. Total environmental loads excreted from beef and dairy production on national scale

- ◆Total amount of N excretion on national scale estimated in this study was smaller than the previous study mainly due to the changes in total heads.
- ◆Total amount of CH₄ emission on national scale estimated in this study was almost equal to the estimation by national report.