

Genetic correlations between piglet production, stayability and feed efficiency traits in Norwegian Landrace

K. H. Martinsen¹, J. Ødegård², D. Olsen³ and T. H. E. Meuwissen¹

¹ Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway. ² AquaGen AS, P.O. Box 1240 Sluppen, NO-7462 Trondheim, Norway. ³ Topigs Norsvin, P.O. Box 504, NO-2304 Hamar, Norway.

Background

- High competition for the feed resources in the world
 - Human population growth
 - Climate changes
 - Bioenergy production
- Economy in pork production

Background

- Selection for feed efficiency- effect on the sow
 - -Reduced appetite
 - –Reduced body reserves
 - Prolonged weaning-oestrus interval
 - -Culling
- New goal

New feed efficiency measure

- Developed a new measure for feed efficiency (Martinsen et al., 2015)
 - Fat efficiency, feed/kg fat
 - Lean meat efficiency, feed/kg lean meat
 - Genetic variation existed
 - –AIM: Genetic relationships between the new feed efficiency measures and sow traits

Material

	Feed intake	BCS	STAY	TLW	TNB
Feed intake	8,161				
BCS	-	30,661			
STAY	-	29,077	61,653		
TLW	-	30,661	61,653	63,330	
TNB	-	30,661	61,653	63,330	63,330

Total 72,168 animals in the analyses and 117,524 animals in the pedigree

BCS - Body condition score at weaning

STAY- Culled after first litter or inseminated with a second litter

TLW – Total litter weight at 3 weeks

TNB – Total number of piglets born

Data editing

- Data set- Feed intake measured on boars
 - 4 SD from the mean was outliers
 - -Animals with missing values was deleted
- Data set- Stayability and piglet production
 - -Only 1. litter sows
 - Age of the sow at farrowing between 250-730 days
 - –Age of litter at weaning < 70 days</p>
 - -TNB ≥ 2
 - –Weaned piglets ≤ TNB

Both data sets were merged into one data set, before analysed

Descriptive statistics

	Mean	s.d.
Feed intake (kg)	152.0	29.4
Lean meat (kg)	52.3	3.6
Fat (kg)	15.9	4.3
BCS (1-5)	2.6	0.5
STAY (0/1)	0.7	0.5
TLW (kg)	67.3	19.2
TNB (number)	13.8	2.9

Statistical model- Feed intake

Total feed intake in the test period (FI)

$$FI = HY_{i} + BM_{j} + ST_{k} + SEC_{n} + \beta_{lm} \times LMEAT_{o} + \beta_{fat} \times FAT_{q} + \beta_{amw} \times AMW_{r}$$

$$+ animal_{s} + pen_{t} + \alpha_{p_{s}} \times lmeat_{s} + \alpha_{f_{s}} \times fat_{s} + e_{ijklmnopqrst}$$

Fixed effects: Herd-year, birth month, scanning time and section

Fixed regression: lean meat, fat and accumulated metabolic body weight.

Random effects: Animal and pen

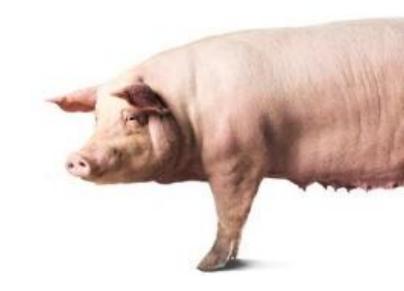
Random regressions: lean meat and fat

Statistical models- Sow traits

Trait	M_LITT	BY	HYS	BRYR	WEAN	WEIGHT	AGEm	AGEa	Litter	animal
STAY	V	V	V	V			V		V	V
BCS	V		V	V	V		V	V	V	V
TLW	V		V	V		V	V		V	V
TNB	V		V	V			V		V	V

M_LITT- Mother's litter number BY-Birth year HYS- Herd-year-season BRYR-Breed-year WEAN – Number of weaned piglets WEIGHT- Number of piglets weighted AGEm – Age of sow at farrowing AGEa- Age of litter at weaning Results – Variance components and heritability

Trait	Genetic variance (σ_a^2)	Residual variance (σ_e^2)	Heritabilities (h ²)
Feed intake in the test period	25.58	17.46 (0.95)	0.59
Residual feed intake (RFI)	18.18 (1.47)	-	-
Lean meat efficiency (LME)	0.22 (0.04)	-	-
Fat efficiency (FE)	0.27 (0.03)	-	-


$$h^2 = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2}$$

Results - Heritabilities

Trait	Heritability (h^2)
BCS	0.13
STAY	0.12
TLW	0.15
TNB	0.09

$$h^2 = rac{oldsymbol{\sigma}_a^2}{oldsymbol{\sigma}_a^2 + oldsymbol{\sigma}_e^2}$$

Results – Genetic correlations

Trait	RFI*					11
LME	-0.25	LME				
FE	-0.71	-0.19	FE			
BCS	0.14	0.02	-0.10	BCS		
STAY	0.11	0.11	-0.23	0.04	STAY	
TLW	0.08	0.13	-0.18	-0.42	0.12	TLW
TNB	0.09	-0.07	-0.07	-0.25	0.32	-0.26

RFI - Residual feed intake

LME- Lean meat efficiency

FE- Fat efficiency

Conclusions

- The genetic analysis showed almost non-existing genetic relationships between lean meat efficiency and the sow traits, while fat efficiency had small but unfavorable genetic relationships with the sow traits.
- Selection for the new lean meat efficiency trait is possible without affecting the sow traits.
- If selection of fat efficiency is carried out, it is important to supervise the piglet production and stayability traits in the sow.

Acknowledgements

• The authors would like to thank Topigs Norsvin for access to data.

