

66° EAAP Annual Meeting 31 August-4 September 2015, Warsaw, Polland Innovation in Livestock production: From Ideas to Practice

Effect of SOD-rich melon in LPS challenged piglets on antioxidant status and growth performance

Ahasan L.¹, Agazzi A.¹, Barbe F.³, Invernizzi G.¹, Bellagamba F.¹, Lecchi C.², Pastorelli G.¹, Dell'Orto V.¹, Savoini G.¹

¹Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milano, Italy.

²Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università di Milano, via Celoria 10, 20133 Milano, Italy ³Lallemand SAS, Blagnac, France.

Email: alessandro.agazzi@unimi.it

Phone: +39 0250318038

INTRODUCTION

Piglets are subjected to stress at weaning

Negative effects on:

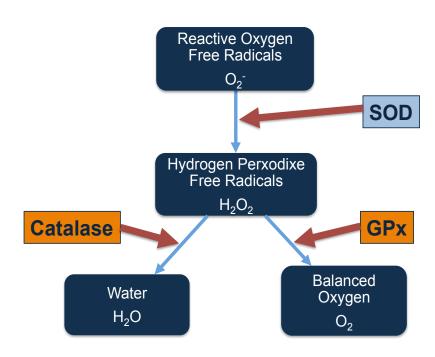
- Immune system (Kick et al., 2012)
- Intestinal functions (Wijtten et al., 2011)
- Endocrine system (Zhu et al., 2012)
- Free radical metabolism (Zhu et al., 2012)

Results:

- Transient anorexia
- Impaired growth
- Increased inflammatory cytokines levels (Pié et al., 2004)
- Chronic immune system stimulation (Bontempo et al., 2014)
- Higher oxidative stress (Wang et al., 2008)
- Impaired antioxidant enzymes system (Han et al., 2011)

Moreover:

Increased effects when a chronic immune stimulation happens (e.g. farm managment conditions)



INTRODUCTION

- Superoxide dismutase (SOD) is a primary internal antioxidant
- SOD as anti-inflammatory substance regulating neutrophil apoptosis (Yasui et al., 2006).
- Improving the oxidative status, by both controlling the production of Reactive Oxygen Species (ROS) and increasing the antioxidant status by nutritional intervention.
- SOD-rich melon outlined positive results on the maintenance of cellular integrity in various experimental models.

(Lallès et al., 2010; Notin et al., 2010; Carillon et al., 2013)

Figure 1. SOD Mechanism of action on oxydative metabolism

AIM OF THE TRIAL

The aim of the trial was to study the effects of a feed supplement (Melofeed®, Lallemand, France) that contains high levels of SOD as a primary antioxidant, on antioxidant status and growth performance of LPS challenged weaned piglets.

Table 1. Trial design

Experimental subjects:	48 female piglet
Age at weaning	24 days
Body weight	7.79 kg ±0.17
Experimental groups	4

Duration of the trial 29 days

Replications/group

Dietary phases:

12 (individual pens)

Table 2. Experimental basal diet

Optisweet SD Zinc oxide (HiZox) Cu sulphate Chemical composition (as fed) Moisture

Ether Extract (%)

Crude fibre (%)

NE (Mcal/kg)

Met+Cys tot (%)

Threonine tot (%)

Triptophan tot (%)

Lys tot (mg)

Starch (%)

Sugar (%)

Zn (mg/kg) Cu (mg/kg)

Ash (%) DE (Mcal/kg)

Composition (Kg/100 kg as fed)

Wheat meal

Barley meal

Sovbean oil

Dextrose

L-Lvsine

Wheat flaked

Sovbean meal 48% Sweet whey powder

Corn gluten meal

Dicalcium phospate

Calcium carbonate

Vit + trace elements*

Sodium chloride

L-Threonine

Flavour

DL-Methionine

Crude protein (%)

18.01 4.52

2.87

5.08

3.44

2.45

29.465

23.120

14.000 17.000

6.000

3.000

2.500

1.500

1.300

0.570

0.500

0.300

0.250

0.230

0.180

0.050

0.015

0.010

0.010

11.30

1.25 0.80 0.85 0.21

41.43

7.54

75.00

24.70

Table 3. Chronic challenge to reduce endotoxin tolerance (Rakhshandeh and de Lange, 2012).

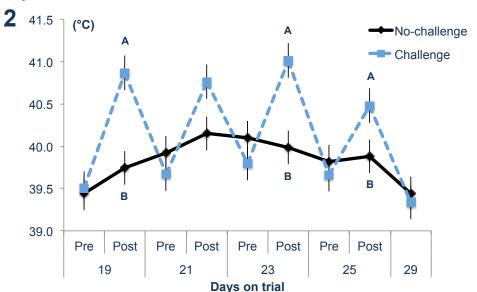
LPS	Intramuscular injection (E. <i>coli</i> serotype 055:B5).
Performed on trial days	19, 21, 23 and 25.
Initial dosage	60 μg/Kg of BW
Subsequent dosage	+12% at each injection

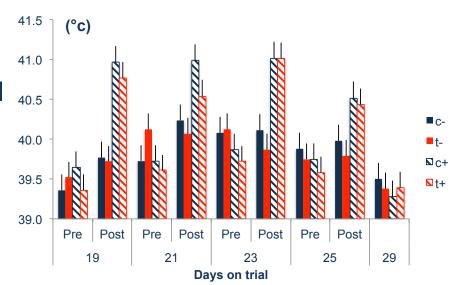
Table 4. Experimental groups and dietary treatments

- Control (C-) basal diet
- Treatment (T-): basal diet + 30g/ton Melofeed® (SOD=2.6 x 10⁶ IU/kg)
- Control + Challenge (C+)
 basal diet + LPS challenge
- Treatment + Challenge (T+)
 basal diet + 30g/ton Melofeed® (SOD=2.6 x 10⁶ IU/kg) + LPS challenge

Table 5. Growth performance, oxidative and immune parameters timetable

		Days on trial									
Item	Method	0	8	15	19	21	23	25	26	27	29
Body Weight (BW)	Electronic scale (Ohaus ES100L)	х	х	х	х	х	х	х	х	х	x
Feed Intake (FI)			х	Х	х	х					х
Body Temperature (BT)	Rectal				х	Х	Х	Х			х
Total Antioxidant Oxidative Capacity (TAOC)	Sigma Aldrich, Cat n. CS0790	Х			х	Х	Х	Х		x	х
Reactive oxygen species (ROS)	Satorelli et al., 2002	Х			х	Х	Х	Х		x	х
Super oxide dismutase (SOD)	Sigma Aldrich, Cat n. C19160	Х			х	Х	Х	Х		x	х
8-oxo-dGuo	ELISA				х			х			x
Kit Radicaux Libres (KRL)	Pastorelli et al., 2013				х			х			x
Haptoglobin (Hp)	Cooke and Arthington, 2013	Х			х	Х	Х	Х			x
IL-1β, IL-6, TNFα (pro-inflammatory cytokines)	ELISA	Х			Х	Х	Х	Х			х




STATISTICAL ANALYSIS

- BW, BT, oxidative and immune response parameters were analyzed by a MIXED procedure of SAS.
- ADG, FI, G:F considered two different trial periods corresponding to day 0-19 (pre-challenge) and 19-29 (challenge and post challenge) using a GLM procedure of SAS with period 0-19 as covariate over challenge and post-challenge period.
- Final BW was also analysed by a GLM procedure using day 19 as covariate.
- Piglet was the experimental unit nested within the diet*challenge group.
- Significance level was fixed for ^{A,B}P≤0.01 and ^{a,b}P≤0.05,
- 0.05<P≤0.1 was considered as a trend.

Validation of the LPS challenge model

Figure 2. Effect of LPS challenge on body temperature of weaned piglets pre and post (2hrs) intramuscular injection

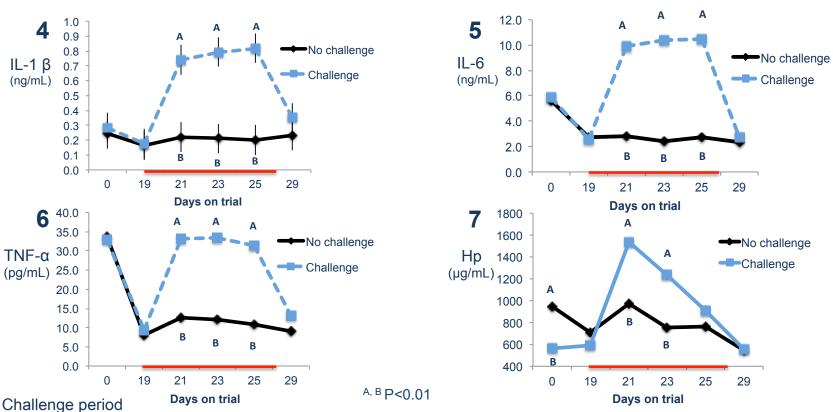
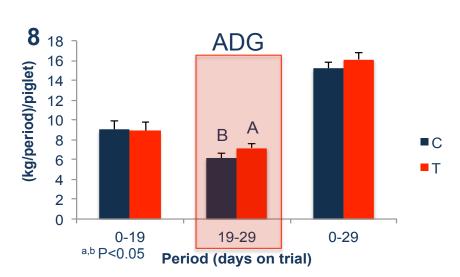
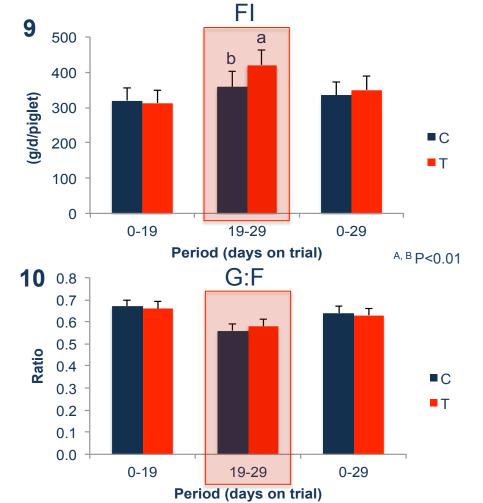


Figure 3. Effect of LPS challenge on body temperature in the four experimental groups pre and post (2hrs) intramuscular injerction)

Day 19:	Diet x Challenge	P=0.05
Day 21:	Diet x Time	P=0.04
-	Diet x Challenge	P=0.06
Day 25:	Diet	P=0.02

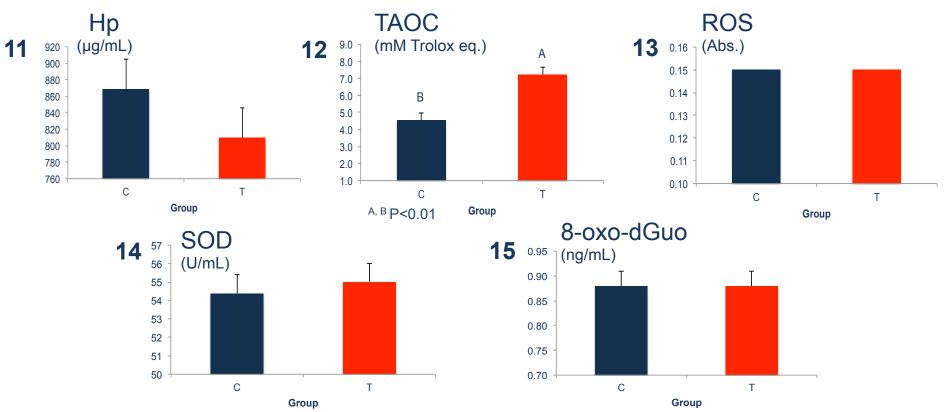
Validation of the LPS challenge model

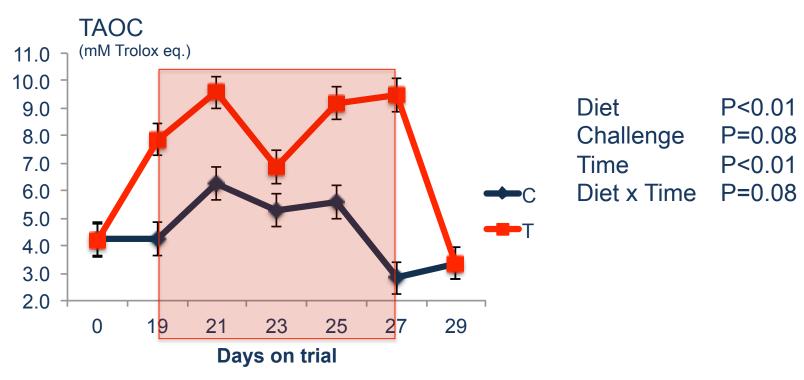

Figures 4,5,6,7. Effects of LPS challenge on IL-1 β , IL-6, TNF α and Hp levels in blood of weaned piglets



Effect of Melofeed® on growth performance

Figures 8,9,10. Effect of Melofeed® on growing performance of weaned piglets




Significant challenge effect on all the parameters from 19 to 29 days on trial (P<0.01)

Figures 11,12,13,14,15. Effects of Melofeed® on oxidative markers of weaned piglets

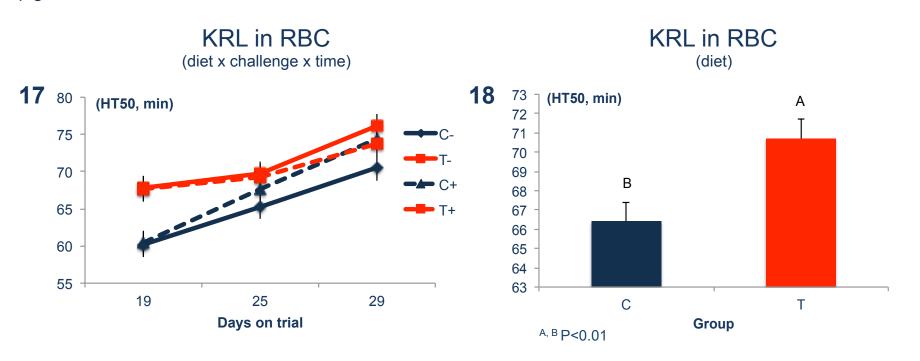

Significant challenge effect on Hp (P<0.03) and trend on TAOC (P=0.08)

Figure 16. Effect of Melofeed® on Total Antioxidant Oxidative Capacity (TAOC) of weaned piglets

Figures 17,18. Effect of Melofeed® and LPS challenge on Kit Radicaux Libres (KRL) in RBC of weaned piglets

DISCUSSIONS

Melon concentrate administration to postweaning piglets leads to:

- Improved growth performance (differently from Lallès et al., 2010), independently from the LPS challenge
- Higher antioxidant plasma levels (TAOC), as reported by Vouldoukis et al. (2004) in vitro
- Increased RBC resistance to haemolysis, according with Vouldoukis et al. (2004) *in vitro* and Notin et al. (2010) in horses
- No effects on proinflammatory ILs, SOD and ROS

DISCUSSIONS

What is the mechanism of action of exogenous SOD?

Beside the chelating effect that can lower the oxidative stress, the question is still debated:

- Does it pass the intestinal barrier?
- Does it work as an antigen in the intestine, leading to an increase of the local immune response and regulating some nuclear factors? (e.g.: NFR2) (Carillon et al., 2013)
- NEXT STEP: Pending analyses for gene expression in liver for SOD, CAT and NFR2....

CONCLUSIONS

The administration of SOD-rich melon concentrate was able to improve some oxidative markers and growth performance of LPS challenged weaning piglets.

Thank you for your attention!

Any questions?