Proxies for methane output in dairy cattle: evaluation of suitability as indirect traits for breeding goal

Filippo Biscarini, Enyew Negussie

Why methane?

Feed efficiency

Strong relationship between CH_4 and feed intake

Emerging phenotype

- Environmental sustainability
- Farm efficiency

Mitigation strategies

diet

e.g. < fibres, > starch (van Gastelen et al., 2015)

supplements

e.g. ionophore antibiotics, tannins, saponins

immunization

e.g. against methanogenic Archaea

probiotics

e.g. yeasts

defaunation

i.e. elimination of protozoa

breeding

cumulative and permanent results

The breeding option

- direct selection against methane emissions
- ruminal CH₄ to be measured on individual animals
- e.g. respiration chambers, GreenFeed
- cumulative, sustainable, longterm, least-cost strategy

methane emissions shown to be heritable

heritability estimates: e.g. $h^2 \sim 0.20$ in beef cattle (Donoghue et al. 2013)

However

- Direct measurement of methane output is expensive, time-consuming and labor intensive
- Not really applicable on a large scale and routine basis (required for a breeding programme)

finding alternative measures that are related to methane production/emission and can be feasibly collected on a large scale and routine basis

need for **proxies**

Proxies are traits/measurements that "approximate" individual methane output, and have desirable characteristics (cheap, easy to measure, robust ...)

Methane production in the rumen is related to many biological processes:

- Feed intake
- Body weight
- Rumination
- Milk yield
- Milk composition
- etc

Borrowing from a "minor" guitarist: this is the quest for our "proxy" lady

Types of proxies

proxy	easy	accuracy	cost	invasive	throughput
Milk MIR	***	high	low	no	high
Rumen fatty acids	*	moderate	high	limited	moderate
Rumen volume / sonogram	**	?	moderate	no	limited
Feed intake / efficiency	**	very high	high	no	moderate
Body weight / milk yield	****	moderate	low	no	moderate
Rumen activity (sensors)	****	moderate	moderate	no	huge
Laser methane detector	****	controversial	high	no	high

A couple of illustrations

rumen sensors

(rumination tag)

measure rumination activity (time) and movement of the animals

rumination activity has been associated to **metabolism** (e.g. blood glucose, proteins, ...) and

probably **related** also to **methane** emissions!

DMI

[Soriani et al., JAS 2012]

A couple of illustrations

predicting equations

e.g.

- from **DMI** [de Haas et al., 2011]
- from **combination of traits** (production, body weight, DMI, ruminal liquor parameters etc ...) [Biscarini, unpublished]

	Model 1	Model 2	Model 3
correlation	0.566	0.626	0.786
std dev	0.124	0.118	0.056

future **perspectives**

Systematic review of possible proxies for CH4: pros and cons, suitability for breeding

This work is being carried on within two European projects:

- Ruminomics (FP7)
- Methagene (COST action)

Meta-analysis of results from literature/other studies

adding value from research

Thanks!

www.ptp.it