Small ruminant grazing, vegetation and landscaping

Piotr Nowakowski, Robert Bodkowski, Katarzyna Czyż

Wroclaw University of Environmental and Life Sciences – Poland

E-mail: <u>piotr.nowakowski@up.wroc.pl</u>

EAAP – 66th annual meeting, Warsaw 2015

Why grazing?

To follow just trophic chain and TO HAVE

- humans desire satisfied
- biodiversity of vegetation
- landscape intact
- small ruminants alive, healthy and productive

Holistic approach to grass from mid XX century

Another book by Andre Voisin:

Grass Productivity, 1959

THE END OF SHEPHERDING?

- Fencing is developing very fast to face the labour pressure.
- The French example of the dry region of Diois in southern Alps.

Source: Sauvaget & Poisson 2001

Temporary grazing is not the same as permanent relying on pasture of ruminant animal!

Real grazer

- Stability of relations animal environment
- (24h/day; up to an entire year)
- Passing information between generations about the environment
- Self learning of eating plants in different seasons and times of the day
- Learning dam offspring

Process of learning to eat all

Long lasting process!!

System "boom-bust" (USA) –in beef cattle learning (adjustement) lasted 3 years with temporary animal performance lowered by 40%!

(Provenza & Papachristou, 2009)

Grazing is not so fashionable in modern technologies! Dry matter requirements [g per day] of growing sheep due to the feed type (ARC 1980)

HERBAGE	CONCENTRATES
57 g/kg W ^{0,75}	90 g/kg W ^{0,75}
100%	158%

Concentrates are winners! STANDARDIZATION!

Desire to eat and accept different chemical compounds = as body requires

[good reference: Cindy Engel (2002) WILD HEALTH – HOW ANIMALS KEEP THEMSELVES WELL AND WHAT WE CAN LEARN FROM THEM J

Animals have to make choices themselves!!

Grazing and browsing

SHEEP BROWSING (LAMBS) VS GRAZING (EWES) Example of mineral content of herbage when soil pH = 4,0 and subsoil pH >7,0 (Ćwikła et al., 1999)

Item	Ca [% in DM]	P [% in DM]	Mg [% in DM]
Rose (Rosa ssp.) - leaves	1,32	0,15	2,30
Hawthorne (Crataegus ssp.) - leaves	1,40	0,12	1,20
Hawthorne – bark	4,65	0,05	0,07
Grasses - herbage	0,48	0,16	0,19
Grasses - hay	0,26	0,15	0,15

Locality, time (diurnal & seasonal) and sequence of grazing

Sheep pasture in the Sudety Mountains - (altitude 550 m) = 51 plant species = pharmacy and threat! (Klimkowska et al. 2009):

Achillea millefolium/ Aegopodium podagraria/ Agrostis alba/ Agrostis vulgaris/ Alchemilla pastoralis/ Alopecurus geniculatus/ Anemone silvestris / Angelica silvestris/ Anthoxanthum odoratum/ Anthriscus silvestris / Arrhenatherum elatius/ Bellis perennis /)Carex Fusa/ Cirsium rivulare/ Dactylis glomerata/ Deschampsia caespitosa/ Dianthus deltoides/ Equisetum arvense/ Equisetum silvaticum / Festuca ovina / Festuca rubra/ Fragaria vesca/ Galium boreale/ Galium verum/ Geum riale / Glechoma hederacea / Heracleum sphondylium/ Hieracium pilosella / Hypericum perforatum/ Lathyrus pratensis/ Leontodon autumnalis/Leontodon hispidus/Luzula campestris/Lysimachia nummularis/ Myosotis arvensis / Phleum pratense/ Poa annua / Poa pratensis / Poa trivialis / Polygonum bistorta / Primula elatior / Ranunculus acer/ Ranunculus repens / Rumex acetosa / Stellaria graminea/ Taraxacum officinale / Trisetum flawescens / Urtica dioica/ Veronica chamaedrys / Vicia cracca/ Vicia sepium

FITONCIDES – plant substances with antibacterial, antiprotozoal, antifungal, antiviral actions:

- Fenyloalkiloamines
- Glukozynolates
- Saponines
- Alkaloides
- Triterpenes
- Terpenoides
- Tannines
- Flawonoides

Relative differences in just one essential oil in the leaves of Tansy (*Tanacetum vulgare*) due to location in the environment of Lithuania (Mockute & Judżentiene, 2003)

The sequence of intake of active substances and ruminant performance!

(Provenza & Papachristou, 2009)

- Tannins => Terpens = ↑↑↑ (++)
- Terpens => Tannins = ↓↓↓ (--)
- Tannins/saponins => Alkaloids = ↑↑↑(++) (ex. Lotus corn.) => Festuca arund./ Phalaris arund.)
- Alkaloids => Tannins = ↓↓↓ (--) (ex. Festuca arund./ Phalaris arund. => Lotus corn.)

Choice of toxication or detoxication

Tannins – example of Birdsfoottrefoil (*Lotus corniculatus*)

(Provenza & Papachristou, 2009)

- Lower parasitic invasions
- Protect from bloat
- Binding with proteins protects them from bacterial processing in the rumen =>improvement in immunological functions
- Lower methan emmisions
- In moderate quantities may influence colour and meat quality traits

Phytoestrogens

(A. Voisin 1959)

- Production in plants depends on P and S levels in the soil
- Low P & S soil status => ESTROGENS ↑↑↑ (Trifolium mediterranean)
- Pasture vs pasture!!! 922 vs 5898 ME/kg DM => 6x!!! (ME = mouse unit)

Effects:

Reproduction \| \| \| \| \| \| Milk production \| \| \| \| \| \|

Phytoestrogens in Common Dandelion (*Taraxacum officinale*) (Voisin, 1959)

- leaves => 77 ME/kg DM
- flowers => 800 ME/kg DM
- flower stems => 1788 ME/kg DM

DIFFERENCES 10 to >20x!!!

ME = Mouse Unit – concentration of oestrogens stimulating oestrus in 50% of females

Landscaping and invasive plants

- Heracleum ssp (Giant hogweed)
- Solidago ssp (Golden rod)
-

Xantium albinum invasion of beef pasture What about mixed grazing? - GOATS LIKE IT!

Solidago ssp. invasion of set aside agriculture landscape

What about pure productivity?

Carcass production in Poland on natural grasslands [own data] vs New Zealand and Ireland technologies [Connolly, Teagasc, 1998]

kg carcasses per ha

Poland	New Zealand	Ireland
80 - 90	184	216

more than 2x difference!

Conclusion

 We have to consider the trophic chain relations rather than just animal production technologies for the sustainability of landscape.

What to do?

- Build <u>AGAIN</u> long term animal & grassland interactions as local technologies
- Make small ruminants more common in the landscape by simplification of:
- regulations ex.encephalopathy histeria,
- management systems,
- processing of animal produce at low production scale

Make true grazer the winner! Thank you!

