

Genetic associations between functional longevity and health traits in Austrian Fleckvieh cattle

C. Pfeiffer¹, C. Fuerst² and B. Fuerst-Waltl¹

christina.pfeiffer@boku.ac.at

¹ Divison of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendel-Str. 33, 1180 Vienna, Austria

Background (I)

- Increase of functional traits in breeding programs
 - Important determinants of profitable and sustainable dairy production
- Health traits
 - Farm economy, animal welfare and customer demands
- Main culling reasons in Austria
 - Fertility disorders (22.9%)
 - Udder diseases (13.5%)
- Ø longevity 3.80 years
 - Potential to improve

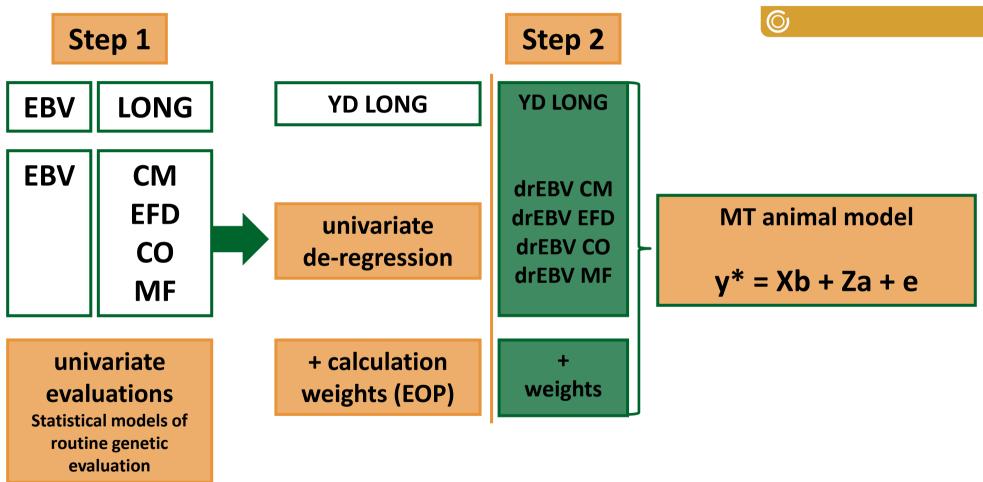
Background (II)

- Health disorders lead to early culling
 - Longevity decreases
- Genetic relations between longevity and health traits are most likely, but ...
 - are not known so far due to
 - limited access to direct health data
 - methodology constraints

Objectives

- Conduct an approximate multitrait 2-step approach applied to yield deviations and de-regressed breeding values
- Estimate genetic parameters
 - Heritabilities
 - Genetic and residual correlations
 - Functional longevity (LONG)
 - Clinical mastitis (CM)
 - Early fertility disorders (EFD)
 - Cystic ovaries (CO)
 - Milk fever (MF)

Materials & methods



- 70,000 Fleckvieh cows (dual purpose Simmental)
 - 2 Austrian regions
 - Maximum 12.5% non-Fleckvieh-gene proportion
 - All 5 traits recorded
 - Born between 2004 and 2009
 - At least 20 daughters/sire
- Pedigree 200,000
- Programs
 - Survival Kit v6: YDs functional longevity
 - MiX99: de-regressed breeding values direct health traits
 - ApaX: Reliabilities
 - ASReml: Estimation of genetic parameters

Approximate multitrait 2-step approach

- Combination of different pseudo-phenotypes feasible
- Fast computing
 - Convergence of AI-REML algorithm 15 iterations / 40 hours

	LONG	CM	EFD	СО	MF
LONG	0.15±0.01				
CM		0.06±0.01			
EFD			0.03±0.01		
СО				0.07±0.01	
MF					0.05±0.01

	LONG	CM	EFD	СО	MF
LONG	0.15±0.01	0.63±0.05	0.29±0.08	0.20±0.07	0.20±0.08
CM		0.06±0.01			
EFD			0.03±0.01		
СО				0.07±0.01	
MF					0.05±0.01

	LONG	СМ	EFD	СО	MF
LONG	0.15±0.01	0.63±0.05	0.29±0.08	0.20±0.07	0.20±0.08
CM		0.06±0.01	0.14±0.09	0.16±0.07	0.37±0.08
EFD			0.03±0.01	0.42±0.08	0.34±0.09
СО				0.07±0.01	0.45±0.07
MF					0.05±0.01

	LONG	СМ	EFD	СО	MF
LONG	0.15±0.01	0.63±0.05	0.29±0.08	0.20±0.07	0.20±0.08
CM	0.09±0.006	0.06±0.01	0.14±0.09	0.16±0.07	0.37±0.08
EFD	0.02±0.006	0.02±0.006	0.03±0.01	0.42±0.08	0.34±0.09
СО	-0.02±0.006	-0.01±0.005	0.02±0.006	0.07±0.01	0.45±0.07
MF	0.02±0.006	0.00±0.005	0.02±0.006	-0.04±0.005	0.05±0.01

Conclusions

- Approach feasible
- Moderate to high genetic correlations between functional longevity and direct health traits
- Low to moderate genetic correlations within direct health traits
- Common genetic background exists
- Selection for healthy cows increases longevity (and vice versa)
 - Animal welfare
 - Farm economics

2-step approach

First step – Calculation of pseudophenotypes

Functional longevity - Survival analysis

$$h(t) = h_{0,ls}(\tau) * exp[\Sigma m \big(f_m(t) + h y_y(t) + s_i + 0.5 mgs_j \big)]$$

- → Yield deviations
- Direct health traits univariate animal model

$$y = Xb + Z_hh + Z_aa + Wp + e$$

- → univariate de-regression de-regressed breeding values
- Effective own performance (EOP)

$$EOP_{i,m} = \frac{\alpha_i}{1 - r_{i,m}^2} - \alpha_i$$

2-step approach Second step – multitrait animal model

Multivariate animal model

$$\mathbf{y}^* = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{a} + \mathbf{e}$$