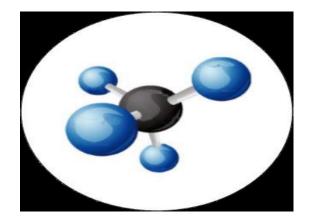

Effect of grass silage maturity and level of intake, on in vitro gas and methane production



Felicidade Macome felicidade.macome@wur.nl

Why we care about methane(CH_4)?

 CH_4 is an important green house gas CO_2 global warming N_2O CH_4 \longrightarrow Energy loss Do we have some alternatives on CH₄ reduction?

- Feeding strategies explored.
- Quality of forage is a key factor for ruminant performance.
- CH₄ production is influenced by quality of grass and level of intake.

Aim:

4

 To evaluate the effect of quality of ensiled grass harvested at different maturities and levels of feed intake of donor cows on *in vitro* gas production and CH₄ synthesis in dairy cows using rumen fluid from the *in vivo* trial.

How we did the experiment

• Substrate

4 grass silages

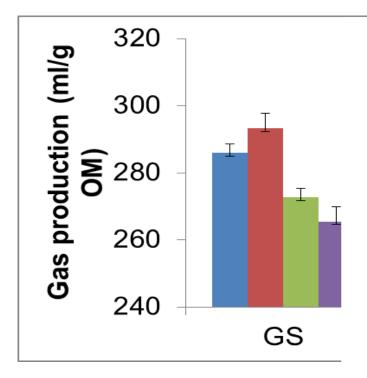
• Rumen fluid (donor cows)

How we did the experiment

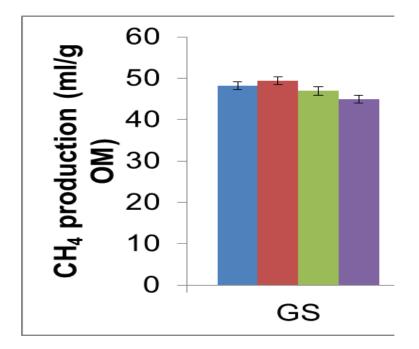
Gas production measured with:

- Automated system during 48h (Cone et al., 1996)
- CH₄ measured at distinct time points
- Analysis
- Volatile fatty acid (VFA).

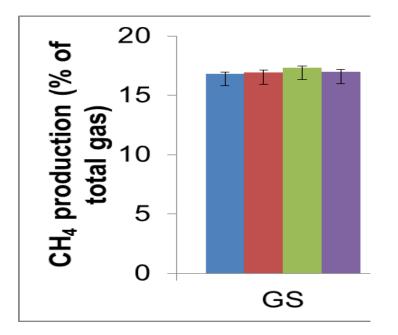
Incubations combinations for the in vitro experiment

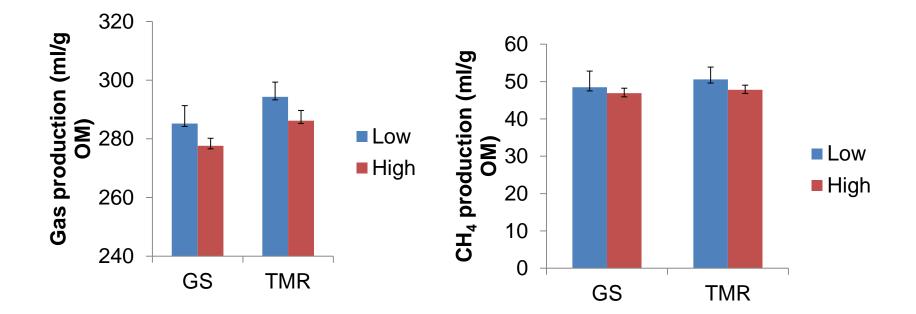

		Rumen fluid				
Substrate	Intake	A	В	С	D	
GS A	High,Low	3	3	3	3	
TMRA	High,Low	3	-	-	-	
GS B	High,Low	3	3	3	3	
TMRB	High,Low	-	3	-	-	
GS C	High,Low	3	3	3	3	
TMRC	High,Low	-	-	3		
GS D	High,Low	3	3	3	3	
TMRD	High, Low	-	-	-	3	

7 GS, grass silage; TMR, total mixed ration

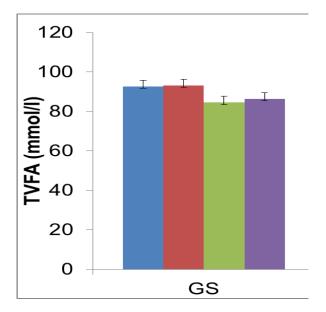

Table 1. Chemical composition (g/kg DM).

Item	Grass silage					
	А	В	С	D		
DM g/kg	456	510	407	431		
OM	894	898	909	921		
CP	286	209	145	124		
NDF	365	469	518	546		

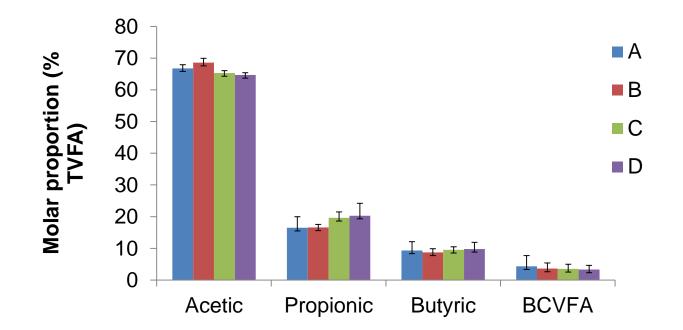

Gas production (GP) using grass silage (GS) or TMR.


CH₄ production(ml/g OM) using grass silage(GS) or TMR

CH_4 production (%) using grass silage (GS) or TMR.



Effect of feed intake level on gas and CH₄ production


12

Total volatile fatty acid (TVFA) using grass silage (GS) or TMR



13

Effect of maturity on molar proportion of VFA

Effect of level of intake on molar proportion of VFA

Discussion

- GP was expected (Cone et al.,1999).
- (Purcell et al., 2011) ↓ CP, increase of NDF and ADF → higher (acetate and butyrate).
- Holtshausen et al. (2012). Reported increased propionate in mature grass similar result found in this study.
- (Bosh et al., 1992; Rinne at al., 2002) reported no change.

Conclusions

- In vitro gas production (ml/g OMI) decrease with increasing maturity.
- Gas and CH₄ production were higher in low feed intake group.
- TVFA was not affected by maturity and molar proportion of propionic acid and BCVFA were affected by level of feed intake.
- Molar proportion of propionic, butyric acid and BCVFA were affected by maturity.

THANK YOU FOR YOUR ATTENTION!!

ANY QUESTION?