

HOUSING FOR ANIMAL WELFARE IN CATTLE

EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015

HOUSING FOR ANIMAL WELFARE IN CATTLE

L. Leso¹, M. Uberti², W. Morshed¹, M. Barbari¹

¹University of Florence, GESAAF ²Freelance veterinarian, Mantua, Italy

HOUSING FOR ANIMAL WELFARE IN CATTLE EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015

FREE STALLS: A WELFARE ISSUE

• Steelworks

• Slippery and hard floors

Animal welfare limitation
Behavioral restrictions
Lameness and lesions

• Steps

• Liquid manure

CPB: AN ALTERNATIVE HOUSING SYSTEM

Housing systems where a deepbedded pack is aerated to enhance heat production and microbial activity and thus increases the **evaporation** of water (Klaas & Bjerg, 2011).

- The whole surface of the resting area is compost-bedded (loose housing, open pack)
- "Cultivated pack" refers to a mixture of manure and bedding (lignocellulosic, compost)
- Moisture content 40-60%
- Pack depth and space per cow depend on the country and the management style (from 30 cm to > 1 m; from 6 to 15 m² bedding/cow)
- Frequently AERATED (stirring and sub-aeration blowing or suckling from the floor)

HOUSING FOR ANIMAL WELFARE IN CATTLE

EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015

CPB: WELFARE IMPROVEMENTS

BEHAVIOR

- No steelwork in the resting area
- High grip surface

• Dry and healthy

Soft surface and absence of steps

REVIEW OF LITERATURE:WELFARE

		Lam	eness	Hock	lesions	Udder health			Hygiene		
Reference	Bedding material1	Lameness prevalence2 (%)	Severe lameness prevalence3 (%)	Hock lesion prevalence4 (%)	Severe hock lesion prevalence5 (%)	Mastitis infection prevalence6 (%)	SCC	BCS7	Hygiene score8	Dirty cows prevalence9 (%)	Annual herd turnover rate10 (%)
Balck et al., 2013	SD	11.9	5	NA11	NA	NA	275510	NA	2.2	29.8	NA
Lobeck et al., 2011	SD	4.4	0.8	3.8	0.8	33.4	434000	2.91	3.18	NA	30.1
Ofner-Schröck et al., 2013	SD	25	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barberg et al., 2007b	SD	7.8	NA	25.1	1	27.7	325000	3.04	2.66	NA	20.9
Fulwider et al., 2007	SD	NA	NA	0	0	NA	176700	NA	NA	21.1	20.4
Shane et al., 2010	SD	NA	NA	19.6	0	NA	155000	3.1	2.4	NA	NA
	CC	NA	NA	18.5	0	NA	123000	3.2	2.7	NA	NA
	WC/SD	NA	NA	0	0	NA	175000	3.3	2.5	NA	NA
	SS/SD	NA	NA	19.4	5.4	NA	111000	3	2.9	NA	NA
	WC/SS	NA	NA	37.5	0	NA	282000	3.3	2.6	NA	NA
	SS	NA	NA	46.9	3.1	NA	145000	3	2.8	NA	NA
Klaas et al., 2010	NO	NA	NA	0	NA	NA	192000	NA	NA	51.2	NA
Ouweltjes and Smolders, 2014	WC	NA	NA	NA	NA	NA	NA	3.1	NA	NA	37.8
	GC	NA	NA	NA	NA	NA	NA	2.9	NA	NA	25.1
	GC	NA	NA	NA	NA	NA	NA	3.1	NA	NA	32.1

1SD = sawdust; CC = corn cobs; WC/SD = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); SS/SD = soybean straw/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); SS/SD = soybean straw/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); SS/SD = soybean straw/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/sawdust (as mix

REVIEW OF LITERATURE: PACK CHEMICAL ANALYSES

	Bedding	Pack depth	Temperature	Moisture			N	Р	K
Reference	material ¹	cm	°C	%	pН	C:N	% (DM)	mg/kg	mg/kg
Balck et al., 2013	SD	0	10.5	56.1	NA^2	26.7	1.70	4000	13000
		10.2	32.3	NA	NA	NA	NA	NA	NA
		20.3	36.1	NA	NA	NA	NA	NA	NA
Barberg et al., 2007a	SD	15		52.7	8.4	21.4	2.45	3111	13831
		30	42.5	56.7	8.6	17.6	2.69	3442	17202
<u>Channa at al.</u> 2010	SD	15.2	28.0	60.9	8.68	37.1	1.2		
Shane et al., 2010	5D	30.5	31.8	57.8	8.69	37.1	1.3 1.3	1449	4857
	CC	15.2	38.1	46.7	7.97	29.1	1.6	1620	8053
		30.5	40.8	41.2	7.38	29.3	1.5	1020	
	WC/SD	15.2	21.4	61.3	8.54	45.7	1.1	1050	3893
		30.5	22.6	59.5	8.67	49.3	1		
	SS/SD	15.2	24.7	60.2	8.58	25.8	1.6	1749	7080
		30.5	28.4	54.9	8.57	25.4	1.5	1/49	7080
	WC/SS	15.2	19.5	60.2	8.48	31.6	1.4	2690	10463
		30.5	19.2	62.3	8.57	30	1.5	2090	10403
	SS	15.2	13.1	60.3	8.58	22.8	1.6	2104	8196
		30.5	13.1	62.3	NA	NA	NA	2104	
de Boer, 2014 ³	WC	0-40	NA	56.9	8.6	10.5	3.57	6589	44084
	GC	0-40	NA	47.5	8.3	16.6	1.36	3924	12933
	GC	0-40	NA	44.6	8.8	15.1	1.63	3773	23646

 1 SD = sawdust; CC = corn cobs; WC/SD = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); SS/SD = soybean straw/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/soybean straw (as mixtures on a 2:1 v/v ratio); SS = soybean straw; GC= green waste compost.

REVIEW OF LITERATURE: PACK BACTERIAL ANALYSES

Reference	Bedding material ¹	Total Bacterial Count log10 cfu/g	Klebsiella log10 cfu/g	E. coli log10 cfu/g	Coliforms log10 cfu/g	Streptococci log10 cfu/g	Staphylococci log10 cfu/g	Bacillus spp log10 cfu/g
Balck et al., 2014	SD	8.2	NA ²	6.0	6.3 ³	7.2	7.9	7.6
Barberg et al., 2007a ⁴	SD	7.0	NA	NA	6.0	6.6	6.2	6.5
Shane et al., 2010 ⁴	SD	7.4	5.9 ⁵	NA	6.8	6.9	4.4	6.9
	CC	7.8	5.8 ⁵	NA	6.6	7.5	6.0	7.4
	WC/SD	7.1	5.7 ⁵	NA	6.5	6.6	4.6	6.8
	SS/SD	7.1	5.1 ⁵	NA	6.4	6.7	4.1	6.6
	WC/SS	7.6	5.8 ⁵	NA	7.0	6.8	ND ⁶	7.4
	SS	7.5	4.65	NA	6.5	7.0	ND	7.3
Lobeck et al., 2012 ⁴	SD	6.5	2.4	NA	4.1	6.5	4.0	4.4
Driehuis et al., 2012	WC	8.4	5.6	2.4	NA	3.0	NA	NA

 1 SD = sawdust; CC = corn cobs; WC/SD = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); SS/SD = soybean straw/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/soybean straw (as mixtures on a 2:1 v/v ratio); SS = soybean straw.

REVIEW OF LITERATURE: MILK QUALITY

Reference	Bedding material ¹	SCC cells/mL	Milk fat %	Milk protein %	Coliforms cfu/mL	Non-ag strept. cfu/mL	Staph. species cfu/mL	Staph. aureus cfu/mL
Balck et al., 2014	SD	246,500	NA ²	NA	NA	NA	NA	NA
Barberg et al., 2007a	SD	325,000	3.88	3.21	NA	NA	NA	NA
Shane et al., 2010 ³	SD	155,000	3.36	3.30	50.1	8.6	6.3	0.1
	CC	123,000	3.17	3.16	1,058.1	872.1	5.8	1.9
	WC/SD	175,000	3.32	3.23	102.7	33.4	2.9	0.0
	SS/SD	111,000	3.06	3.09	2.8	6.0	11.1	0.0
	WC/SS	282,000	3.15	3.21	65.4	138.1	26.9	5.7
	SS	145,000	3.08	3.15	85.1	8.0	12.7	0.1
Lobeck et al., 2011 and 2012	SD	434,000	NA	NA	406.8	878.4	52.6	3.6

¹SD = sawdust; CC = corn cobs; WC/SD = wood chip fines/sawdust (as mixtures on a 2:1 v/v ratio); SS/SD = soybean straw/sawdust (as mixtures on a 2:1 v/v ratio); WC/SS = wood chip fines/soybean straw (as mixtures on a 2:1 v/v ratio); SS = soybean straw.

HOUSING FOR ANIMAL WELFARE IN CATTLE EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015

REVIEW OF LITERATURE: SUMMARY

ADVANTAGES

DISADVANTAGES

Reduced production of liquid manure (CH₄-> ?)

Gaseous emissions (NH₃/NO_x-> ?)

Animal welfare

SPACE PER COW/BEDDING/MAIN AGEMENT

TAS/XTAS (compost)

High agronomic value (+ orgC/+orgN/ -NH₃)

Construction + bedding costs

INTRODUCTION

 The main reasons producers reported for building CPB is improved cow comfort and longevity. Despite that little is still known about the effect of this housing system on longevity.

MATERIAL AND METHODS

- 30 dairy farms included
 - 10 free stall + synthetic mattress (MAT),
 - 10 free stall + straw (STW)
 - 10 cultivated pack barns (CO)

- Cows' performance/longevity
 - Monthly herd records (Associazione Italiana Allevatori)

STATISTICAL ANALISYS:R

str(DfArt2015)

330 obs. of **32 variables** (housing and perf. parameters): farm code h_sys date n_tot_cow n_milk_cow m_yie evm m_fat m_pro n_par dim dry calv_int do VWP n_ai HDR CR PR age age_1c culling scc l_sco MIR S_tot S_bed S_conc fence BR Sto_Dens_FS

Univariate linear models (pairwise) to identify variables for the multivariate model. Variables with P<0.2 were included.

Automatic model selection procedure, package "glmulti" (iterative; crit:BIC)

Fitting the multivariate linear mixed model

(nested rANOVA), package "nlme"

Obtaining the Last Squared Means and SE, package "Ismeans"

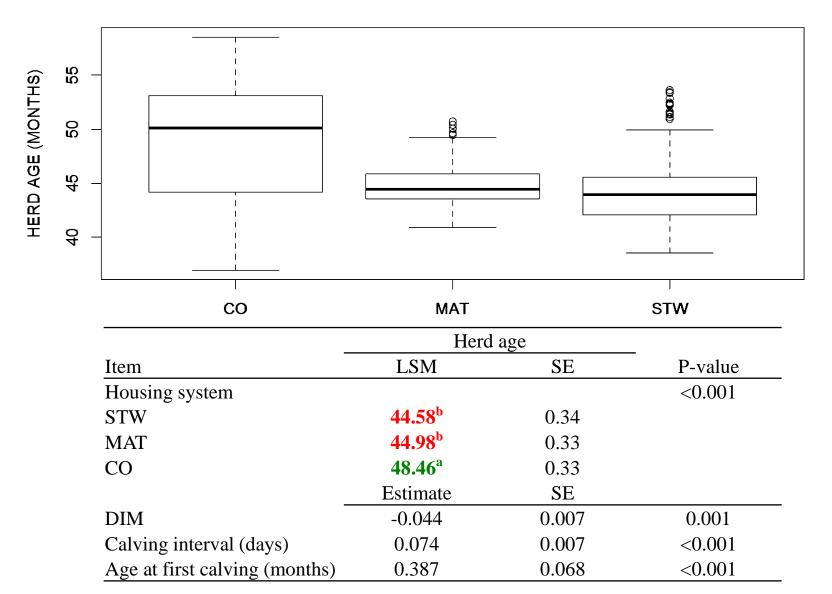
Post hoc analisys, pairwise comparison, package "multcomp" (Tuckey)

RESULTS: GENERAL (DESCRIPTIVE STATISTICS)

Barns' characteristics

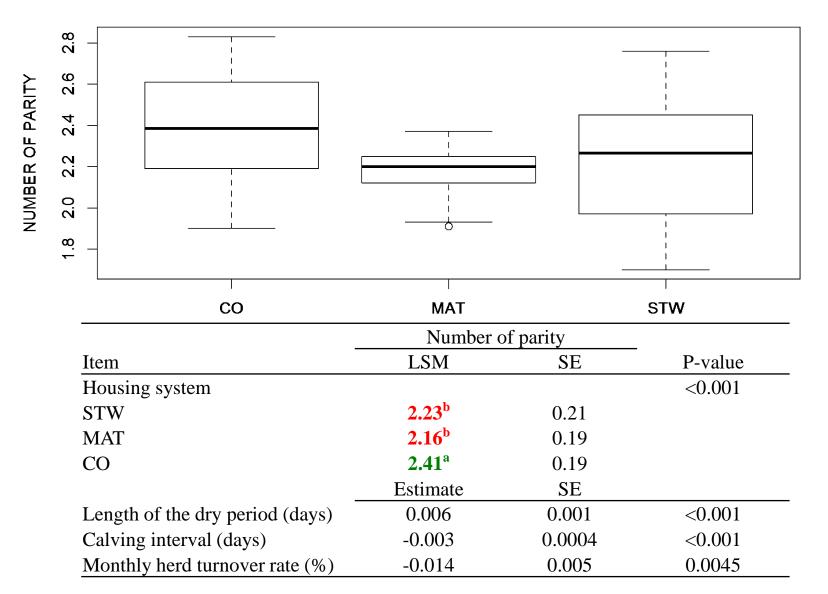
	STW		MAT		C	0
	Mean	SD	Mean	SD	Mean	SD
Total area per cow (m ² /cow)	9.3	5.4	9	2.3	11	4.1
Stocking density (cows/stall)	1.09	0.42	0.92	0.1		-
Pack density (m ² /cow)	-	-	-	-	6.8	2.4
Bedded ratio	0.37	0.1	0.38	0.06	0.65	0.18
Space at feed fence (m/cow)	0.63	0.18	0.66	0.07	0.58	0.2

Cows' performance

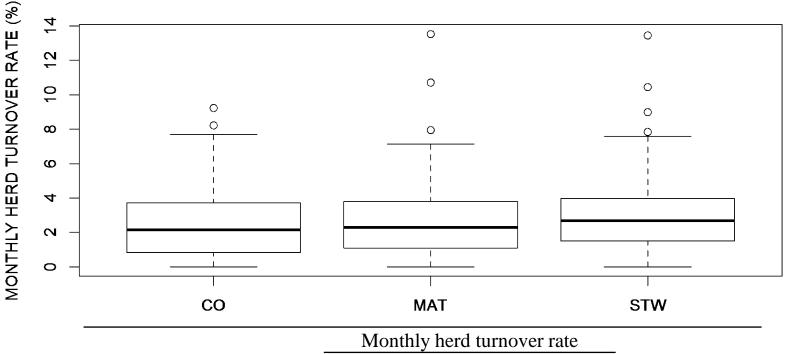

	ST	STW		AT	СО	
	Mean	SD	Mean	SD	Mean	SD
Cows, no.	143	83.9	147	102.3	112	56.6
Day in milk (days)	190	26.3	204	35.7	209	33.1
Parity	2.23	0.27	2.18	0.11	2.39	0.25
Milk yield (kg/cow*day)	31.4	3.91	29.8	4.6	30.8	3.6
305ME (kg) ¹	10901	963	10450	1043	10541	663
% fat	3.93	0.36	3.75	0.32	3.67	0.28
% protein	3.43	0.13	3.38	0.15	3.48	0.16
SCC (cells*1000/mL)	310	128	259	115	354	171
Calving interval (days)	420	19.1	442	37.3	449	72.9
Services per pregnancy, no.	2.54	0.61	2.59	0.64	2.67	0.5

HOUSING FOR ANIMAL WELFARE IN CATTLE

EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015


RESULTS:LONGEVITY:HERD AGE

EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015


RESULTS:LONGEVITY:NUMBER OF PARITY

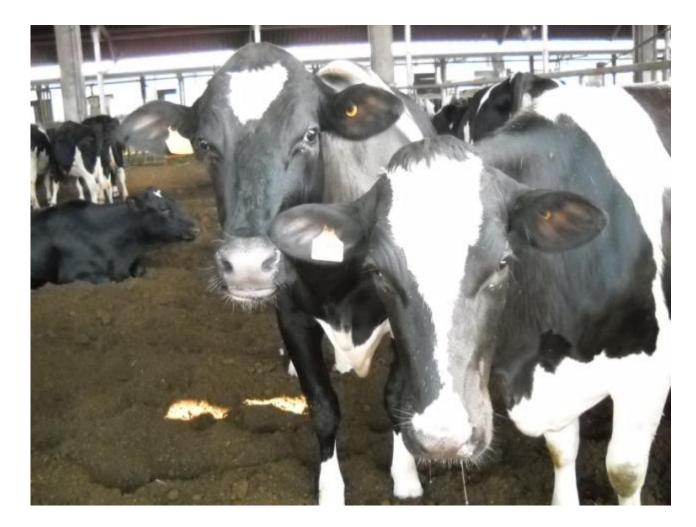
EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015

RESULTS:LONGEVITY:HERD TURNOVER RATE

_	within the second	turnover rate	_
Item	LSM	SE	P-value
Housing system			0.382
STW	2.82	0.41	
MAT	2.60	0.31	
СО	2.73	0.26	
	Estimate	SE	
305-d mature eq. yield,(kg)	-0.0004	0.0001	0.006
Number of parity	-1.728	0.5100	< 0.001
Days open (days)	-0.011	0.0036	0.001

CONCLUSIONS

- Results confirm that CPB housing can improve longevity of dairy cows.
- Further research is deserved (especially about turnover rates/culling).
- Reasons for culling should be also evaluated.


HOUSING FOR ANIMAL WELFARE IN CATTLE

EAAP Annual Meeting 2015, Warsaw, Poland. 31st August - 4th September 2015

THANK YOU, QUESTIONS?

Further info: Abstract # 21380 lorenzo.leso@unifi.it +39 3491215931

