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Motivation – Background 

 

  

 

 Selective breeding of high-yielding dairy cows 

 up to 45 kg milk per day 

 High energy demand can not be fully covered by food intake 

 negative energy balance during their early lactation 

 Mobilization of body fat, protein and mineral stores 

 adaptation of the hepatic metabolism 

Successful metabolic 

adaptation without any 

disorder occurrences  

Development of production-

related disorders, such as 

ketosis and fatty liver  
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Motivation– Metabolic Adaptation 

 

  

 

Why does the success of adaptation differ substantially between cows - 

even under the same conditions and similar production levels?   

Ingvartsen et al. (2003)  

Drackley et al. (2005) 

 Graber et al. (2010)  

This metabolic ‚robustness‘ has a genetic basis. 

Goal: Study the genetic basis of 

the metabolic adaptability of 

dairy cows during early lactation 
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601,455 SNPs  

Illumina HD Bovine BeadChip 

NEFA (non-esterified fatty acid) 

BHBA (beta-hydroxybutyrate ) 

glucose 

Genotypes Phenotypes 

3 weeks ante-partum (-3W) 

4 weeks post-partum (+4W) 

13 weeks post-partum (+13W) 

178 dairy cows (field study, 

Graber et al., 2010) 

Data 

 

  

 

Ensembl: 22,025 genes 

(231,712 intragenic SNPs)  

KEGG: 81 metabolic pathways 

(6,376 genes) 
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NEFA     BHBA     glucose 

Data 

 

  

 

key factors characterizing the 

metabolic adaptation of dairy cows  

5 

van Dorland et al. (2009) 

Graber et al. (2010) 

Gross et al. (2011) 



6 

GWAS  

 

  

 
Genome-Wide Association Study (GWAS): Is the 

phenotype under consideration influenced by any genetic 

factors?   
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Methods – SMA 
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Methods – SMA 

 

  

 

Disadvantages: 

 high dimensional data (up 

to millions of SNPs) 

 vast multiple testing 

problem 

 low power 

 correlation of SNPs (LD) 

 limitation in biological 

interpretation 
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Methods – Gene-based Test 
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Advantages of the gene-based analysis: 

 less multiple testing 

 able to account for the correlation (LD) of the SNPs 

 able to detect genes with many small or  

    medium-sized genetic effects 

Methods – Gene-based Test 
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Gene-based Score Test (GBST)  

 

  

 

Regression model for a gene with g SNPs:  

 

 test statistic according to Pan (2007): 

 Zhang (2005):                               for certain numbers a,b and d if 

the null hypothesis                                                 is true.  

log-likelihood function 

 

score statistics of the SNPs j=1,2,…,g 

 

estimated variance of the score statistics  
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GWAS  

 

  

 
Genome-Wide Association Study (GWAS): Is the 

phenotype under consideration influenced by any genetic 

factors?   
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Methods – Pathway Analysis 

Gene-Set Enrichment Analysis (GSEA, Subramanian et al. 2005) 

Inputs: 

1. A list                                      of n genes ordered according to a 

ranking metric                   with                                         .  

     r = ‘importance’ of a gene to a phenotype,  

 e.g.  r = -log(p-value)                                  

 

2. A gene set S with s genes, e.g. a pathway. 
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gene in pathway S gene not in pathway S 

important less important 
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GSEA – Subramanian et al. (2005)  
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GSEA – Subramanian et al. (2005)  

 

  

 

Procedure to test the association of the phenotype to the pathway S: 

1. Start with a pathways score                           . 

2. Go through the ordered list L from                          and 

 add       with                           if the gene     is in the pathway S 

or 

 substract          otherwise. 

3. The enrichment score          of the pathway S is defined by the 

maximum value of the score                 . 

4. Permute the phenotypes to obtain the null distribution of          . 
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important less important 

Maximum = Enrichment Score 
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GSEA – Subramanian et al. (2005)  
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Results – Gene-based Analysis 

Gene-based Analysis for metabolite NEFA 
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Results – Gene/Pathway Analysis 

 Number of significant genes  

 for the three metabolites  

 (FDR < 5%): 
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38 
 NEFA 

 
 

 

0 
29  
BHBA 

32  
glucose 

0 0 

0 

 Number of significant pathways 

for the three metabolites  

 (FDR < 5%): 
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 NEFA 

 
 

 

1 
5  
BHBA 

5  
glucose 

0 1 

0 
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Results – Pathway Analysis  

 

  

 

r = -log(pNEFA × pBHBA × pglucose) 

Are there pathways that have a joint impact on the three metabolites?  
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Results – Pathway Analysis 

46 
 genes 

 
 

 

33 
8  
genes 

50  
genes 

0 0 

0 

Steroid Hormone  
       Biosynthesis 
              p-value < 4×10-3 
 (McCabe et al., 2012) 

            Glycerophospholipid  
       Metabolism 
p-value < 1×10-4 
(Contreras et al., 2011) 

Ether Lipid  
      Metabolism 
         p-value < 5×10-4 
(Contreras et al., 2011) 

Significant pathways having a joint impact on the three metabolites 
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More results in  

Ha et al. (2015) 
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Discussion 

 
 Detected several biologically sensible significant genes and 

pathways associated with candidate metabolites transition period 

 

  evidence for genetic basis 

 

 Many genes are only significant at certain points of times 

 

  time-dependency of the genetic basis 

      

  potential candidate genes that become active in early  

     lactation 

 

 Three pathways were that are involved in the metabolism of lipids 

and steroids and have a joint impact an all three phenotypes 

 

 complexity of the genetic basis of the metabolic  

     adaptation 
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Outlook 
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Step 1: Identification of 

candidate genetic factors 

(SNPs, genes, pathways)  

for the metabolic ‘robustness’ 

Step 2: Validation of the results 

on a transcriptomic level using 

RNA sequencing data 

Step 3: Using the results to 

develop an SNP-chip 

optimized for the breeding of  

more ‘robust’ dairy cows  
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Thank you for your attention. 
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Methods – Population Structure 
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Significant pathways and references supporting the 

associations: 
Phenotype Time Pathways  Literature 

NEFA T2 Histidine metabolism Vanhatalo et al., 1999 

Sulfur metabolism   

T2/T1 Glycerolipid metabolism Contreras & Sordillo, 
2011 

Glycerophospholipid metabolism Contreras & Sordillo, 
2011 

Taurine and hypotaurine metabolism   

BHBA T2 Retinol metabolism LeBlanc et al., 2004 

Tyrosine metabolism   

Inositol phosphate metabolism   

Steroid hormone biosynthesis   

T2/T1 Synthesis and degradation of ketone bodies Kanehisa et al., 2012 

Tryptophan metabolism   

Inositol phosphate metabolism   
27 

Results – Pathway Analysis 
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glucose T2 Steroid biosynthesis Marks & Banks, 1960 

Other glycan degradation   

Fatty acid elongation   

Ether lipid metabolism   

T2/T1 Ether lipid metabolism   

Starch and sucrose metabolism Kanehisa et al., 2012 

Steroid hormone biosynthesis Marks & Banks, 1960 

Glycerophospholipid metabolism   
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Results – Pathway Analysis 
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Methods – Size Bias 
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Single Marker vs. Gene-based Analysis  


