

Using whole genome sequences to identify candidate mutations affecting Milk Fatty Acids in dairy cattle

Govignon-Gion A.¹, Sanchez M.P. ¹ Croiseau P. ¹, Barbat A. ¹, Fritz S. ², Boussaha M. ¹, Brochard M. ³, Boichard D. ¹ ¹INRA, 78350 Jouy en Josas ²ALLICE, 75012 Paris ³IDELE, 75012 Paris France

Introduction

Complex traits are influenced by **many QTLs**, each explaining a small part of their variability

QTL full characterization is especially challenging and **only a few QTLs have been identified so far**, in spite of large efforts

New tools have become available:

- High throughput **genotyping** of large populations
- Whole genome sequencing

Is it now possible to re-address the question of QTL identification in a more efficient way ?

<u>Objectives</u> Identification of candidate causal mutations for milk fat composition

PhénoFinLait project

8746 cows with milk fat composition & 50k genotypes

« 1000 bull genomes » project

1147 bulls with whole genome sequences (RUN4)

Genome Wide Association Study (GWAS) at the full sequence level

Material & methods: 23 Fatty acids estimated by MIR

Mid-Infrared (MIR) spectra

Pre-correction of data for **non genetic** effects

Herd * test-day Month * year of calving Parity * days in milk

Total SAT
C4:0
C6:0
C8:0
C10:0
C12:0
C14:0
C16:0
C18.0

Total UNSAT			
Total MONO	Total POLY		
C18:1cis9	C18:2cis9trans11		
C18:1cis12	C18:2cis9cis12		
C18:1t11t10	C18:3n3		
TotC18:1	TotC18:3		
TotC18:1cis	Omega 3		
TotC18:1trans	Omega 6		

Material & methods: animals

~ **120,000 cows with phenotypes** (~ 600,000 test-day milk samples)

8746 cows genotyped with the 50k Beadchip

2882	2816	3048
Montbéliardes	Normandes	Holstein
MON	NOR	HOL

GION et al - EAAP 2015, Warsaw, Poland

Material & methods: genotypes & imputation

27 millions of sequence variants imputed for 8746 cows

GWAS & Bayesian analyses

Within breed single marker **GWAS** with **GCTA** (Yang et al., 2011) **27 millions variants**, analyzed one at a time Polygenic effects of animals, GRM calculated from HD 631,000 SNP

Selection of the most interesting QTL regions

Bayesian analyses (BayesC) with **GS3** (Legarra et al., 2013) Within breed, Multimarker (up to 30,000 markers) Includes also a pedigree-based polygenic effect

Bayesian analyses

Candidate variants were selected according to their **probability of inclusion** (based on 100,000 iterations, burn-in=20,000, thin = 50)

A **difficulty**: due to **very high LD**, inclusion probability of a region is distributed over many linked variants, and can be low for individual variants

Inclusion probabilities were **summed over 5kb windows** to detect the largest signals

Candidate variants were searched within the best windows

Complementary information : (1) Across breed comparison (2) Variant Annotation (1000 bull genomes)

GWAS results

Number of QTLs

- \checkmark -log₁₀(p_value) > 6
- $\checkmark~1$ QTL maximum in 2 Mb
- ✓ Drop-off value = max(2, 2/3 peak)

Trait	MON	NOR	HOL
C4:0	24	30	28
C12:0	24	18	31
SAT	23	11	26
MONO	22	15	20
ω3	25	21	44

GWAS results: status of known mutations

GION et al - EAAP 2015, Warsaw, Poland

.010

The regions studied

Chromosome	Région (Mb)	Trait	GWAS test Log ₁₀ (1/p) max MON – NOR – HOL
5	92.5-94.5	SAT	14.2 – <mark>13.2</mark> – 24.4
14	1.3-3.8	SAT	34.4 - 79.9 - 169.8
17	52.5-55.0	C4:0	30.2 - 47.8 - 12.3
19	50.0-53.0	C12:0	28.2 – <mark>15.2</mark> – 38.8
27	36.0-36.5	C16:0	16.8 - <mark>9.3</mark> - 9.7

GION et al - EAAP 2015, Warsaw, Poland

Results: Chromosome 5, SAT

Results: Chromosome 14, SAT

Other mutations than K232A suspected: QTL in populations fixed for K232A and in bulls homozygous for K232A

This region seems to be rich, with other mutations in DGAT1(4 ?) and in 2 other genes

Results: Chromosome 17, C4:0

25 markers in very high LD, with similar probabilities, in the BRI3BP gene (all intronic)

Results: Chromosome 19, C12:0

Several genes involved 6 candidates in the upstream regulatory region of FASN

GION et al - EAAP 2015, Warsaw, Poland

Results: Chromosome 27, C16:0

12 variants very close to each other present PI between 2 and 5% in two breeds 4 with the highest probabilities are upstream of AGPAT6 and are the best candidates

Results: Summary of results

BTA	Bounds of peak (kb)	Trait	Candi- date variants	Genes	Annotation of variants in genes
5	93 940-93 955	SAT	4	MGST1	Upstream
	1620-1625	SAT, POLY	1	GPT	3'UTR
14	1790-1870	SAT	4	DGAT1	Various
	2700-2720	POLY	4	CYP11B1	Upstream / Downstream
17	53 075-53 085	C4:0	22	BRI3BP	Intronic
19	51 360-51 385	C12:0	6	FASN	Upstream
27	36 205-36 220	C16:0	4	AGPAT6	Upstream

BayesC, used to analyze targeted regions, is a good tool to select candidate mutations, in combination with functional annotation

Across breeds, when QTL co-localize, we observed that the same genes are involved

But across breed information is weaker than expected to target candidates. A majority of candidate mutations seem to be breed specific

Invitation: Talk 214 Session 20, Tuesday, 3:30 : Identification of causal variants for milk protein composition using sequence data in dairy cattle, by MP **Sanchez** et al

« The 1000 bull genomes » consortium

The 1000 bull genomes project

.019