

66 th EAAP annual meeting, 31 August – 4 September 2015, Warsaw Poland

Data integration and network construction with muscle metabolome and meat quality data in pigs

Julia Welzenbach, Christine Große-Brinkhaus, Christiane Neuhoff, Karl Schellander, Christian Looft, Ernst Tholen

Institute of Animal Science Animal Breeding and Husbandry / Genetics group University of Bonn, Germany

Introduction - meaning of drip loss in pork

Introduction - meaning of drip loss in pork

tschaftliche

¹Fischer et al. 2007

¹Bino et al., 2004

landwirtschaftliche fakultät

¹Bino et al., 2004

landwirtschaftliche fakultät

Investigation of the **relationship** between **metabolite profiles** and **drip loss**

- get new insights in the complex biochemical processes of drip loss
- test different statistical approaches to reveal the most important metabolites
- detect metabolites as potential biomarkers

Animals and drip loss phenotyping

- 97 F_2 pigs of Duroc × Pietrain resource population
- Meat samples of *M. longissimus dorsi*
- Record of drip loss 24h pm
 - > Bag-Methode of Honikel (1986)
 - drip loss range: 0,4 5,3%

Quantification and annotation of metabolites

- by gas and liquid chromatography with mass spectrometry (GC-MS, LC-MS)
- "untargeted" metabolomics profiling
 - Detection of the whole metabolome
 - 1993 metabolites detected
- functional annotation
 - Human Metabolome Database, Lipid Maps, METLIN
 - 400 of 1993 metabolites annotated

Statistical analysis I

- Pre-correction of phenotypes and metabolite profiles
 - generalized lineare model (GLM) with slaugther weight and season

- Statistical approaches to analyse the drip metabolite associations
 - 1. Correlation analysis
 - 2. Principal component analysis (PCA)
 - 3. Weighted network analysis (WNA)
 - using ඹ WGCNA¹
 - 4. Random forest regression² (RFR)

¹Langfelder & Horvath 2008, ²Breimann 2001, ³Strobl et al. 2007

Statistical analysis I

- Pre-correction of phenotypes and metabolite profiles
 - generalized lineare model (GLM) with slaugther weight and season

- Statistical approaches to analyse the drip metabolite associations
 - 1. Correlation analysis
 - 2. Principal component analysis (PCA)
 - 3. Weighted network analysis (WNA)
 - using ඹ WGCNA¹
 - 4. Random forest regression² (RFR)

handle the "Large p, small n"problem (Overfitting)

¹Langfelder & Horvath 2008, ²Breimann 2001, ³Strobl et al. 2007

Statistical analysis II

2. PCA

- Condenses the metabolite profiles into representative, uncorrelated principle components (PCs)
- Metabolites are quantified by their corresponding loadings

3. Weighted network analysis (WNA)

 Generates biological interpretable modules based on a hierarchical clustering dendrogram

Height

Metabolites are characterised by

> module membership (MM)

 Connectivity of the metabolites within a module

metabolite significance (MS)

 Based on the trait ↔ metabolite correlation

4. Random Forest Regression (RFR)

- supervised learning tool using tree-based methods
- key characteristics of RFR:

RFR is able to handle datasets with complex interaction structures and highly correlated variables

 RFR calculates variable importance (VI) values, that are based on prediction accuracy¹

¹Strobl et al. 2007

Results – Identification of biomarkers

- **1. Correlation analysis**
 - 71 (5) metabolites positive (negative) correlated ($p \le 0.05$)
 - Range: 0.24 to 0.28 respectively -0.24 to -0.23

2. PCA

- First 3 PCs specify 46.9 % of metabolite expression variance
- Loadings are very weak (range: -0.1 to 0.1) → not significant¹
- PCA not used for biomarker identification
- But: PCA was used to reduce the data set for RFR

¹DiLeo et al., 2011

Results – Identification of biomarkers

- 3. Weighted Network analysis (WNA)
 - Clusters the metabolites into 10 modules
 - two modules significantly associated with drip loss

trait	module	cor.	p-value	number metabolites
drip loss	,purple'	+ 0.21	p ≤ 0.04	52
	,green'	+ 0.21	p ≤ 0.04	49

- 4. Random Forest Regression (RFR)
 - 293 metabolites with significant (p ≤ 0,05) variable importance (VI) for drip loss

pH1

Octulose-1.8-bisphosphate

Methyglyoxal

2.1-Stearoylcarnitine

landwirtschaftliche fakultät

Results - prediction accuracy of selected metabolites

- overlap in "Top 30" significant metabolites for drip loss
 - UNA 16 3 RFR 16 0 13 1 26

correlation analysis

- 20 metabolites identified by more than one method
- multiple R²: 32.73 %

- stepwise Regression of the 20 metabolites
- resulted in 5 important metabolites

biomarker for drip loss	regression coefficient
Glycerophosphocholine	45.82*
C24:1 Sphingomyelin	-50.53*
Ubiquinon (Prenol Lipid)	532.20*
C26:1 Sphingomyelin	1870.00**
not annotated	398.50***

• multiple R²: 26.61 %

universitätbonn Conclusion and perspective

- Correlation analysis, WNA and RFR are suitable in identification of predictors
- Glycerosphospho- und Sphingolipids are the most promising biomarkers
- Selected set of metabolites has moderate prediction accuracy and also an effect on other meat quality traits
- Requirements of the development of reliable metabolite biomarkers
 enhanced abilities of metabolite quantification and annotation
- Future perspective: usage of combined omics-profiles as more exact phenotype and in GWAS of identifiy ,real' powerful SNPs

14

Thank you for your attention

- Bertram H. C., Schafer A., Rosenvold K., Andersen H. J. (2004) Physical changes of significance for early post mortem water distribution in porcine M. longissimus. Meat Sci. **66**: 915-924.
- Bino R. J., Hall R. D., Fiehn O., Kopka J., Saito K. (2004) Potential of metabolomics as a functional genomics tool. Trends in Plant Science. 9: 418–425.
- Breiman L. (2001) Random forests. Mach. Learn. 1: 5–32.
- Fischer K., Lindner J. P., Freudenreich P., Spindler M., Schüssler G. (2007) Schnellanalytische Bestimmung des Wasserbindungsvermögens und anderer Merkmale des PSE-Status von Schweinefleisch mit Hilfe der VIS/NIR-Spektroskopie. Mitteilungsblatt der Fleischforschung Kulmbach. 46: 209-215.
- Honikel K. O., Kim C. J., Hamm R., Roncales P (1986) Sarcomere shortening of pre-rigor muscles and ist influences on drip loss. Meat Sci. 16: 267-282.
- Lambert I. H., Nielsen J. H., Andersen H. J., Ortenblad, N. (2001) Cellular model for induction of drip loss in meat. J. Agric. Food Chem. 49: 4876-4883.
- Ortenblad N., Young J. F., Oksbjerg N., Nielsen J. H., Lambert I. H. (2003) Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am. J. Physiol. Cell. Physiol. 284: 1362-1373.
- Piironen V., Lampi A. M. (2004) Occurrence and levels of phytosterols in foods; in Dutta PC (ed): Phytosterols as Functional Food Components and Nutraceuticals. New York, Marcel Dekker,1–32.
- Zhang B. und Horvath S. (2005) A general framework for weighted gene coexpression network analysis. Statistical Applications in Genetics and Molecular Biology Vol. 4: Iss. 1, Article 17.

Statistical analysis

Random Forest Regression (RFR)

supervised learning tool using tree-based methods with integrated permutation tests

universitätbonn Results - important biomarkers

• Ranking of metabolites in "top 30" of correlation analysis, WNA and RFR

drip loss	Cor	MS	VI	pH1	Cor	MS	VI
2.3-Naphthalic acid	23.	×	10.	His Ala Trp Trp	5.	4.	2.
Glycero-3-phosphocholine	8.	×	7.	Cytidine	25.	8.	12.
Glycero-3-phosphoserine	×	28.	23.	Allopurinol-1-ribonucleoside	×	9.	25.
Glycerophosholipid	22.	14.	×	Lactic acid	24.	×	10.
Triacylglycerol	19.	12.	×	Lys Ser Ile	19.	×	6.
3-Methyl-2-oxovaleric acid	21.	13.	×	Phosphocreatine	26.	×	21.

pH24	Cor	MS	VI	color	Cor	MS	VI
α-Hydroxybutyrate	1.	1.	×	Octulose-1.8-bisphosphate	7.	1.	×
Heptadecanoyl carnitine	2.	2.	×	Fructose-6-phosphate	27.	9.	×
Stearoylcarnitine	3.	4.	×	Glucose-6-phosphate	23.	7.	×
Gle-cholesterol	×	×	2.	Inosine-5-monophosphate	28.	10.	×
Methyglyoxal	×	×	9.	Phosphoglycolic acid	11.	12.	×
Glucose	×	×	11.	Nicotinamide adenine dinucleotide	4.	×	2.

universität**bonn** Results – potential biomarkers

