

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique

Effects of a sequential offer of hay and TMR on feeding and rumination behaviour of dairy cows

Florian Leiber, Johanna K. Probst, Anet Spengler Neff

florian.leiber@fibl.org

Introduction: background: grassland utilisation

Grassland-based ruminant production:

- A matter of global nutrient resource efficiency
 - > less feed-food competition for arable land
 - > less need in protein concentrates, shifted across the globe
- A matter of ecological resources
 - > Biodiversity
 - Carbon sequestration
- At least grassland-rich regions are challenged to make better use of this resource (e.g. Switzerland)

Introduction: background: concentrate reductions

- Switzerland: GMF («Grassland-based milk and meat production»)
 - Min. 75% of the feed must come from grassland resources (including artificial grasslands within crop rotations). This means: maize silage + concentrates = max. 25% of the diet.
- > Switzerland: organic standards of BioSuisse
 - > Min. 90% roughages in milk production (calculated per herd and year).
- But: differentiated feeding management options for concentrate-reduced production systems are lacking.

Introduction: roughage based feeding management

- Which management options exist for a zero- or lowconcentrate-strategy?
 - Production, storage and feeding of different roughage qualities
 - > Diversity on pastures?
 - > Performance-groups?
 - > TMR or separate offers?
 - > How to increase roughage intake by feeding management?
- Which parameters do we measure to assess feeding situations?
 - Only feed quality and animal performance?
 - Or additionally animal related parameters like feeding behaviour, faeces quality and BCS?

Introduction: Aims of the project

- > Evaluating in one experiment:
 - > Roughage-based feeding management options
 - concentrate reductions
 - sequential offer of different roughages
 - Animal-related assessment parameters
 - Eating and rumination behaviour
 - Faeces particle composition

Methods

- > Organic dairy farm near Berne, Switzerland
- > Swiss Fleckvieh (average performance: 7000kg milk / a)

Methods

- > Organic dairy farm near Berne Switzerland
- > Swiss Fleckvieh (average performance 7000kg milk / a)
- > Stanchion barn with separated feeding troughs

Animals and experimental schedule

- > Organic dairy farm near Berne Switzerland
- > Swiss Fleckvieh (average performance 7000kg milk / a)
- > Stanchion barn with separated feeding troughs
- 2 groups of 15 cows each
 - » «Prot+»: 2.4 kg individually fed concentrates / cow / day
 - » «Prot-»: 0 kg individually fed concentrates
 - > Excluded animals: 3 in Prot+, 4 in Prot-
- 2 experimental periods (21days each)
 - Period 1: TMR1 ad libitum for all cows
 - Period 2: TMR2 ad libitum for all cows; 6.00 a.m.- 8.00 a.m. hay ad libitum for all cows

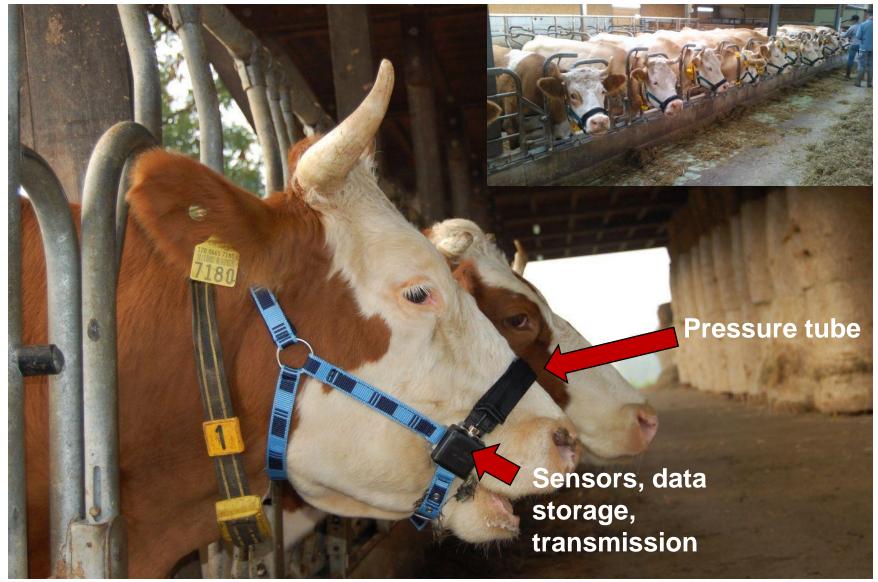
Materials: diets

TMR1:

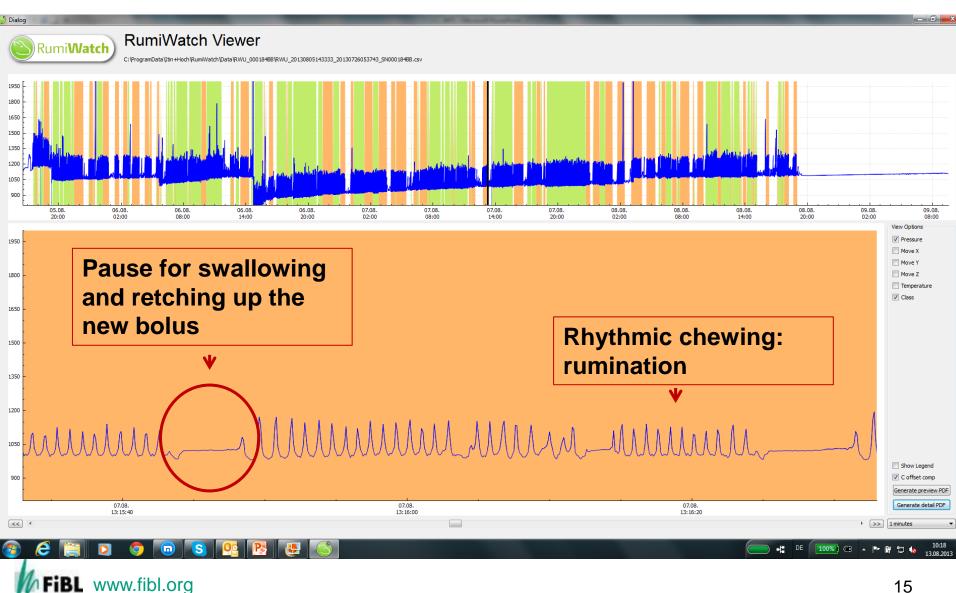
- > 0.3 maize silage,
- > 0.32 grass silage,
- > 0.21 hay,
- > 0.09 dried alfalfa meal,
- > 0.05 potatoes
- > 0.03 soybean cake.

TMR2:

- > 0.35 maize silage,
- > 0.38 grass silage,
- 0.06 hay,
- > 0.11 dried alfalfa meal,
- > 0.06 potatoes
- > 0.04 soybean cake



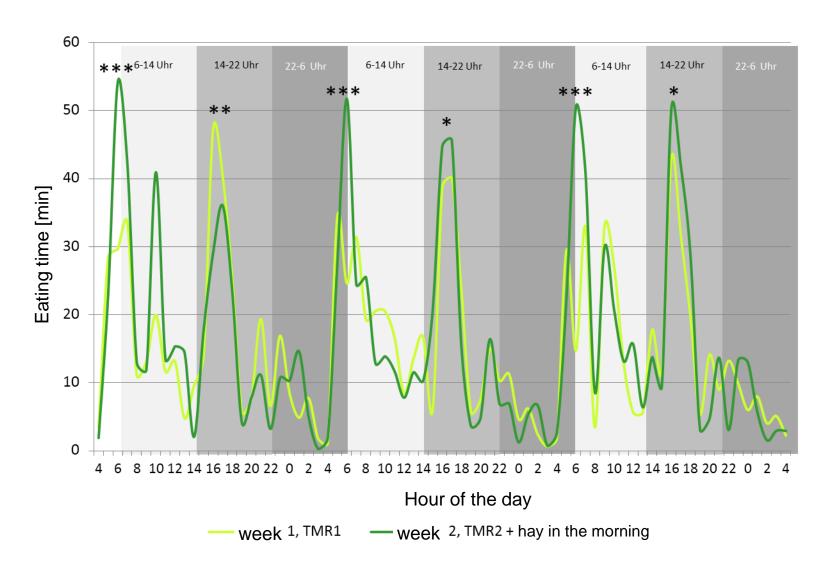
Materials: diet composition


	TMR1		TMR2		Hay		Concentr. 1	Concentr. 2
	Average	SD	Average	SD	Average	SD		
Crude protein [g/kg DM]	140	±4.5	133	±3.0	172	±13.0	250	380
Acid detergent fibre [g/kg DM]	298	±30	293	±0.0	335	±20.5	80.7	77.2
NEL [MJ/kg]	5.65	±0.05	5.70	±0.00	5.40	±0.30	7.5	7.0

Materials: RumiWatch® chewing sensors

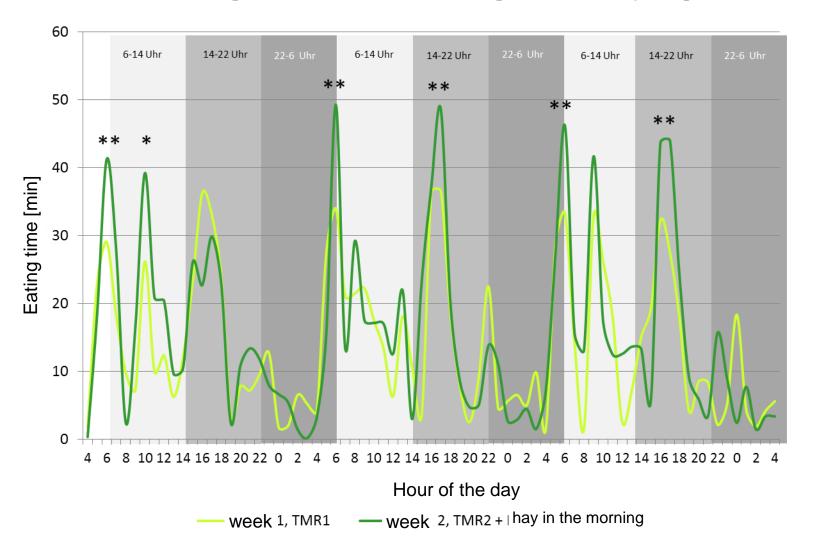
Materials: RumiWatch® chewing sensors

Materials: RumiWatch® chewing sensors

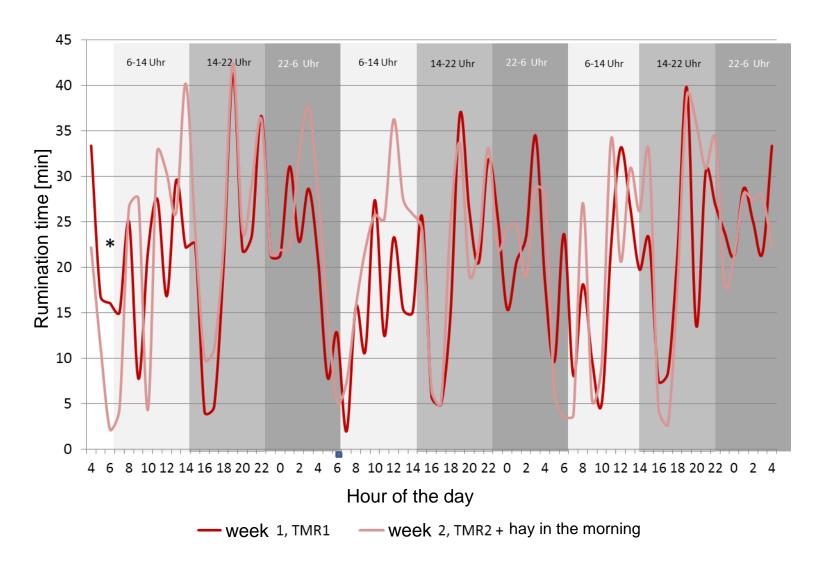


Methods: sampling

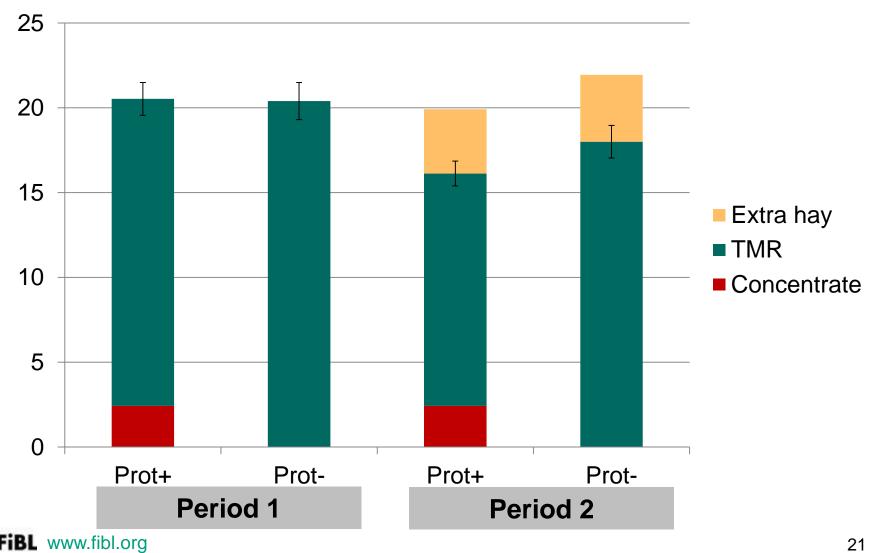
- Sampling weeks in days 17-21 of each period
 - > Individual feed intake hand weighed, daily
 - > Feed samples twice per week
 - Milk yield and sampling: twice per week
 - > Chewing sensors: 96h per week (72h used for analysis)
 - > BCS and body weight: once per week



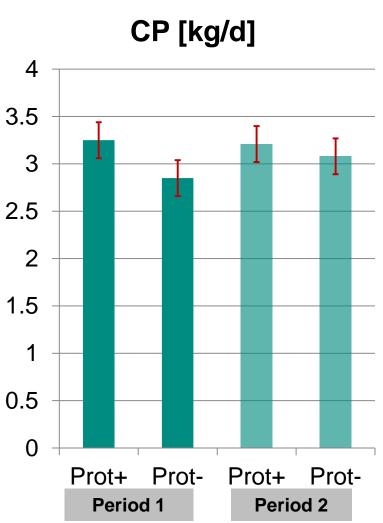
Results: eating pattern during the day (group 1)

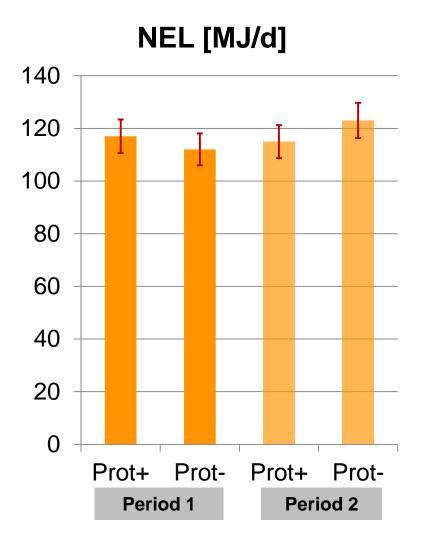


Results: eating pattern during the day (group 2)



Results: rumination pattern during the day (group 1)





Results: Dry matter intake of cows (kg DM / d)

Results: Crude protein and NEL intake of cows

Results: Eating time and activity changes

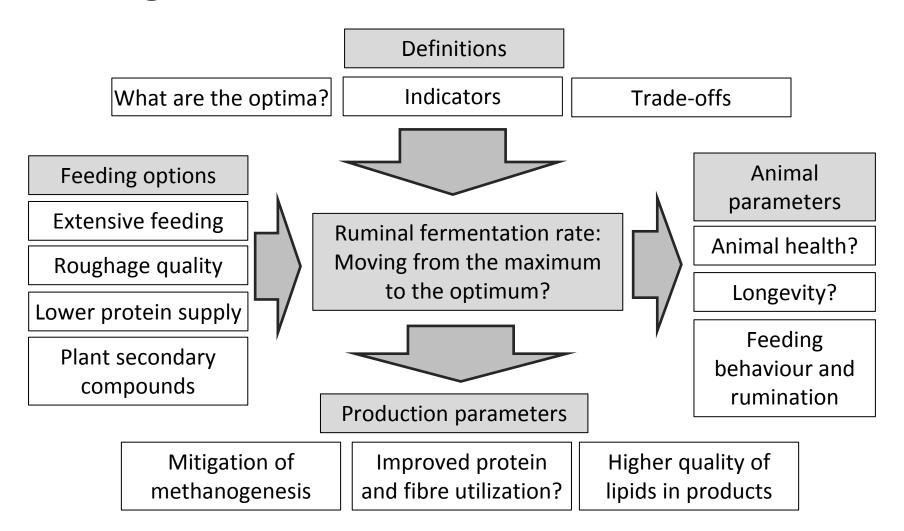
	Week 1		We	ek 2	P-values			
	Group	Group	Group	Group	Group	week	G*W	
	Prot+	Prot-	Prot+	Prot-				
Eating time								
Eating [min/Tag]	376	376	400	395	0,987	0,183	0,995	
Eating 6-14 h [min/h]	18,4	18,5	23,2	22,2	0,718	0,001	0,640	
Eating 14–22 h [min/h]	19,5	18,8	18,8	19,0	0,863	0,915	0,510	
Eating 22-6 h [min/h]	9,7	10,8	8,0	8,2	0,268	0,003	0,769	
Activity change								
Activity change in 24 h [number/h]	7,86	7,76	6,35	5,94	0,764	0,027	0,830	
Activity change 6–14 h [number/h]	8,27	8,37	7,30	7,10	0,956	0,153	0,861	
Activity change 14–22 h [number/h]	8,75	8,50	7,22	6,75	0,682	0,038	0,903	
Activity change 22–6 h [number/h]	6,06	6,76	4,53	3,98	0,844	0,016	0,447	

Conclusion I

- Sequential offer of hay in the morning significantly influenced the eating pattern, increasing intake time during daytime and decreasing intake during night time.
- Consequently the number of activity changes per hour decreased, especially during the night time.
 - We assume that this is positively related with animal welfare and health.
- Sequential offer of hay did not influence intake amounts (DM, CP, NEL)
- Concentrate reduction did not influence feeding and rumination behaviour (but did influence nutrient intake and efficiency).

Conclusion II

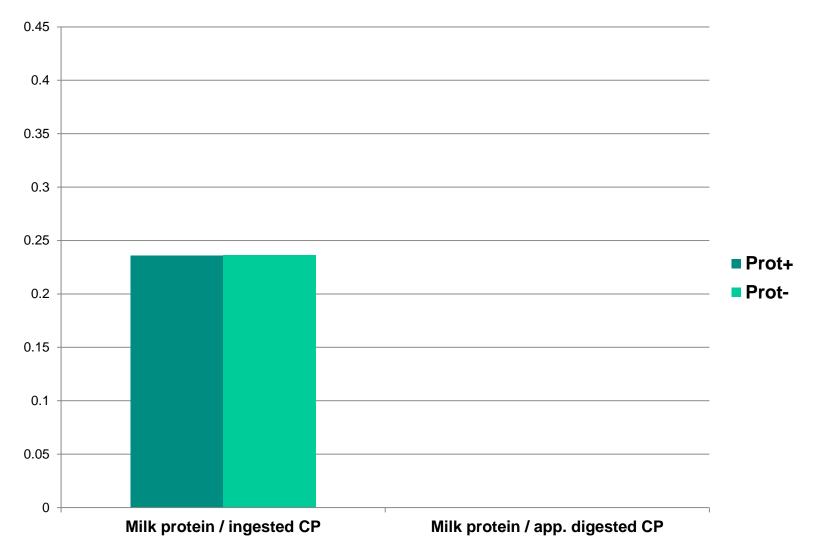
- Feeding and rumination behaviour parameters as measured with the noseband sensors proved to be sensitive to feeding management interventions.
- These parameters appear to be useful to assess production- and welfare-relevant responses of cows to feeding management.
- To deepen these aspects and to develop practicable tools on this basis, much broader farm-based data and experiment-based physiological research is needed.


Thank you for your time and attention! florian.leiber@fibl.org

Introduction: roughage based feeding management

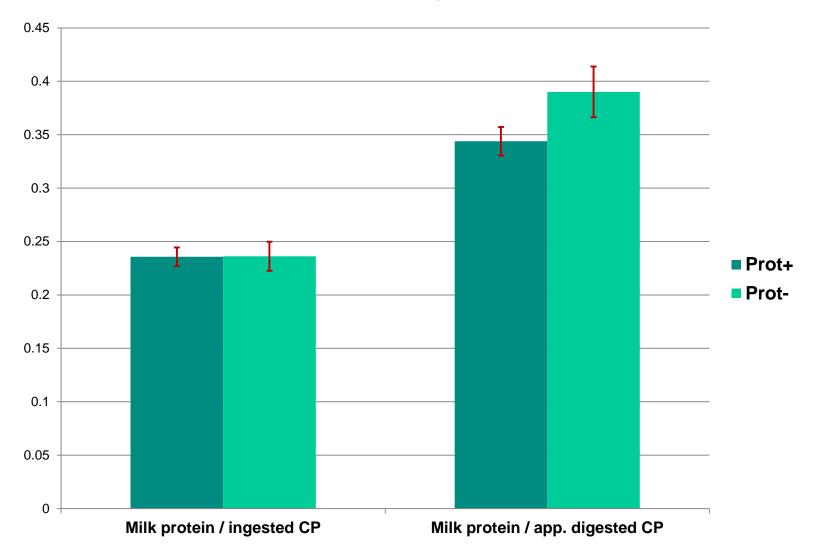
Results: intake and apparent digestibility

Period (P)	Period 1		Peri	od 2	P-values		
Group (G)	Prot+ (n=12)	Prot- (n=11)	Prot+ (n=12)	Prot- (n=11)	G	Р	G×P
Intake [kg/d]							
Total dry matter TMR	20.5 18.1	20.4 20.4	20.0 13.7	22.0 18.0	n.s. <0.05	n.s. <0.001	n.s. 0.125
Concentrates Extra hay	2.43 0.0	0.0	2.43 3.79	0.0 3.95	n.s.	-	-
Crude protein NEL [MJ]	3.25 117	2.85 112	3.21 115	3.08 123	n.s.	n.s.	n.s. n.s.
Apparent protein digestibility [%]	68.6	60.7	68.0	61.0	<0.001	n.s.	n.s.

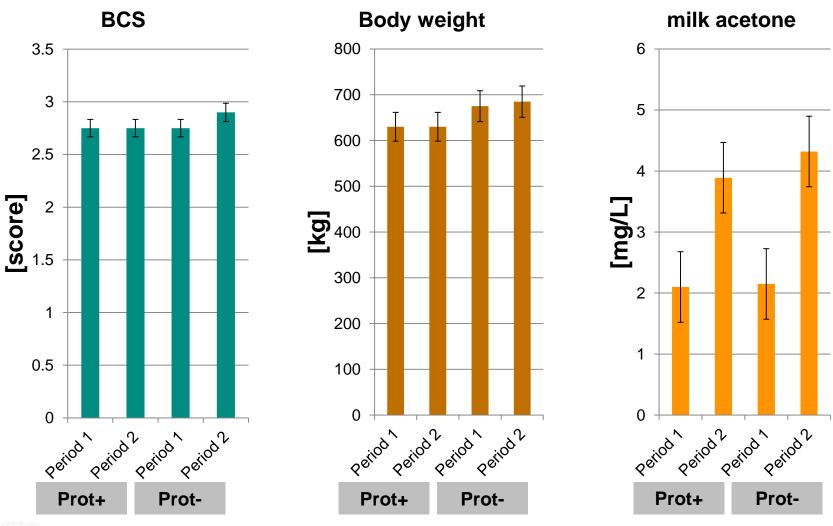


Results: performance and protein efficiency

Period (P)	Period 1		Pe	riod 2	P-values		
Group (G)	Prot + (n=12)	Prot - (n=11)	Prot + (n=12)	Prot - (n=11)	G	Р	G×P
Milk yield [kg/d]	25.1	22.0	23.9	20.9	n.s.	<0.05	n.s.
Milk protein yield [g/d]	770	684	758	684	n.s.	n.s.	n.s.
Milk protein concentration [g/100g]	3.09	3.20	3.22	3.34	n.s.	<0.001	n.s.
Milk fat concentration [g/100g]	3.81	4.14	3.91	4.12	n.s.	n.s.	n.s.
Milk urea concentration [mg/dl]	16.4	14.3	19.3	15.4	<0.05	<0.05	n.s.
Protein efficiency [g milk protein / g CP intake]	0.235	0.235	0.222	0.215	n.s.	<0.05	n.s.



Results: protein efficiency



Results: protein efficiency

Results: BCS, body weights, milk acetone

Materials: diet composition

	TMR1		TMR2		Нау		Concentr. 1	Concentr. 2
	Average	SD	Average	SD	Average	SD		
Crude protein [g/kg DM]	140	±4.5	133	±3.0	172	±13.0	250	380
Acid detergent fibre [g/kg DM]	298	±30	293	±0.0	335	±20.5	80.7	77.2
Lignin [g/kg DM]	41.9	±0.65	38.9	±1.35	48.0	±6.45	2.7	2.5
Crude Ash [g/kg DM]	91.6	±0.05	85.8	±0.10	90.2	±0.95	70	95
NEL [MJ/kg]	5.65	±0.05	5.70	±0.00	5.40	±0.30	7.5	7.0

