Effects of kelp meal on health and productivity of mink challenged with the Aleutian mink disease virus

A.H. Farid¹, N.J. Smith² and M.B. White²

¹Department of Plant and Animal Sciences, Facuty of Agricuture, Dalhousie University, Truro, Nova Scotia, Canada ²Perennia Food and Agriculture, Bible Hill, Nova Scotia, Canada

Introduction

- Nova Scotia: >50% of ~ 2,000,000 mink pelts in Canada
- The problem: Aleutian mink disease virus (AMDV) ssDNA virus, 4801 bp
- Endemic in Nova Scotia
- Mortality and reduced performance
- No vaccine or a treatment
- Virus eradication
 Detection of antibodies against the virus by counter-imunoelectrophoresis (CIEP)
- Since mid-1970s, little progress

The big change

Selection for increased tolerance to the disease symptoms. The most significant change in the mink industry

Nova Scotia ~ 1,000,000 USA ~ 1,300,000 The Netherlands ~ 700,000

and the number is increasing

Selection for tolerance:

- High mortality and reduced reproductive performance for several years
- Substances that can ease negative effects of infection are of particular interest to mink ranchers.

Kelp: Ascophylum nodosum Brown alga Rockweed, Norwegian kelp, knotted kelp, knotted wrack

Seaweed of northern Atlantic Ocean

NS: 8,600 km coastline

http://www.inter.dfo-mpo.gc.ca/Maritimes/

Kelp is abundant

Objective

To evaluate kelp as a feed additive for improving health and reproduction of mink infected with AMDV

Materials and Methods

- 75 AMDV-free female black mink
- Inoculated intranasally with a spleen homogenate containing a local strain of the AMDV in Sep. 2013.
- Treatments: 0%, 0.75%, 1.5% kelp

Feed preparation

Attaching kelp powder to dry pellets 96.75% pellet + 2.5% flour + 0.75% kelp

Experimental design

Animals were housed in one row in two blocks.

Sampling

Days pi

2013

Sep. 9 Oct. 10

31

0

Nov. 5 **Dec. 17** 56

99

2014

Feb. 11

Sep. 11

155

367

Measurements

- Daily health monitoring, mortality date
- Sero-conversion (CIEP)
- Antibody-titer: qELISA
- Viremia: PCR
- Serum total proteins (refractometer)
- Albumin:Globulin ratio (iodine agglutination test)
- Body weight
- Pelt defects (white hair fibers)
- Rectal temperature (31, 56, 99, 155)
- White blood cell counts (31 & 56)

Basophils, eosinophils, macrophages, neutrophils, lymphocytes, monocytes

Histopathology

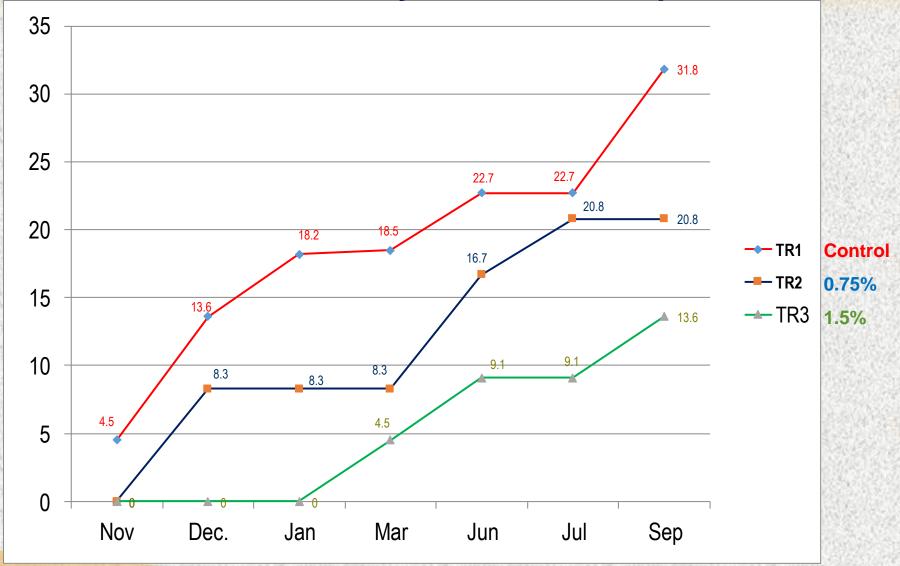
0, 31, 56, 99, 155, 367

Breeding

- 62 females each bred with 2 males (March 2 to 20, 2014)
- Each female was exposed to 2 males up to 6 times
- Mating results recorded (mated, held, tried, no response)
- Whelping: April 26-May 9, 2014
- Weaning: 5 to 6 weeks of age

Data analysis

- Statistical Analysis System (SAS)
- Reproductive performance: x²
- Mortality: Logistic regression (cumulative logit model)
- Mixed Model


Results & Discussion

No significant effect of kelp feeding on

- Antibody titer (qELISA)
- Viremia (PCR)
- Serum total proteins (refractometer)
- Albumin:Globulin ratio (iodine agglutination test)
- White blood cell types
- Rectal temperature
- Fur quality (white hair fibers)

Cumulative % mortality: Nov. 2013 -Sep 2014

Average body weight, g 1300 **Control →** TR1 0.75% 1200 → TR3 1.5% 1100 1000 900 Reduced feed intake 800 High salt, taste 700 * 600 31 56 99 155 367 Sep. Oct. Nov. Dec Feb Sep

Faculty of Agriculture

Reproductive performance

Measurement	Control	0.75% kelp	1.5% kelp	Pr
Females mated/exposed	15/18 (83.3%)	17/22 (77.3%)	19/22 (86.3%)	0.96
Females whelped/bred	12/15 (80.0%)	9/17 (52.9%)	17/19 (89.5%)	0.59
Females whelped/exposed	12/18 (66.7%)	9/22 (40.9%)	17/22 (77.3%)	0.44
Kits born alive/female exposed	32/18 (1.78)	23/22 (1.04)	114/22 (<mark>5.18</mark>)	0.00
Kits born alive/female whelped	32/12 (2.67)	23/9 (2.56)	114/17(6.70)	0.03
Kits weaned/born alive	20/32 (62.5%)	29/39 (74.4%)	78/114 (68.4%)	0.89
Kits weaned/ female exposed	20/18 (1.11)	29/22 (1.32)	78/22 (<mark>3.54</mark>)	0.00
Kits weaned/ female whelped	20/12 (1.67)	29/9 (3.22)	78/17 (<mark>4.59</mark>)	0.07

Conclusions

Feeding kelp to mink infected with AMDV

- No significant effect on immune response parameters
- Tended to reduce mortality
- Reduced rate of gain
- Improved reproductive performance

Acknowledgements

- Animal sampling & laboratory tests:

 Irshad Hussain, Irin Arju, Priyanka Rupasinghe,
 Hannah Titus
- Animal management: Donald Gunn
- CIEP & histology: The staff of the Pathology Lab, NS Dept. Agriculture

Financial support

- Tidal Organics
- Research Acceleration Program of the NS Dept. Agriculture

Thankyou

