

Zinc-methionine bioplex administration to pregnant and lactating sheep and selected wool parameters

Czyż K., Kinal S., Wyrostek A., Roman K., Janczak M., Bodkowski R., Patkowska-Sokoła B.

e-mail: anna.wyrostek@up.wroc.pl

66th EAAP Annual Meeting 31.08- 4.09.2015 r.. Warsaw

Why methionine and hair?

 Next to cystine one of the main components of keratin, responsible for the proper construction of the hair (Reis.1992; Qi.1994)

$$_{H_3C}$$
 s $_{NH_2}$ OH

Why zinc and hair?

 It contributes in sulfur amino acids incorporation into the hair (Reis.1989)

Zinc deficiency inhibits wool growth (Reis.1989)

The problem of deterioration quality of wool during pregnancy and lactation

 Lowest thickness than the average (Patkowska- Sokoła 1991)

 Lower growth rate relative to average annual growth (Patkowska- Sokoła 1991)

The aim of the study was to examine the effect of chelate (Zn + methionine)* supplementation to Merino ewes, during pregnancy and early lactation, on wool quality traits

^{*} Zinpro100 preparation (Zincpro Corporation. USA)

Animals

Experiment: 4 months- 3.5 month of pregnancy and 2 weeks of lactation period

Basic sheep nutrition

Diet	Pregnant ewe	Lactating ewe
Maize silage	34.4%	35.8%
Meadow hay	27.4%	25.9%
Rye straw	27.4%	21.4%
Barley grain	13.8%	17.4%

^{*}Content per kilogram of Dry Matter

Zinc (mg/kg d.m.)

Group	Pregnant ewe	Lactating ewe
	content	
Control	49.36	62.12
Experimental	89.36	102.12

Minimum requirement: 20- 33 mg/kg DM Maximum requirement: 750 mg/kg DM

(NRC 1985)

Samples and measurements

 Wool samples were cut at the left side before and after experiment from every ewe to evaluate:

- √ Wool length (cm)
- ✓ Wool thickness (µm)
- ✓ **Zinc content of wool** (mg/kg DM)- atomic absorption spectrophotometer AAS-3
- ✓ The composition of element ions on the surface of wool scanning microscope
- ✓ Histological structure of wool scanning microscope

Results

The average length and thickness of wool

Parameter		Group	
		Control	Experimental
Length (cm/ 4 months)	mean	2.58*	3.31*
	sd	0.5	0.88
Thickness (µm)	mean	22.56*	24.39*
	sd	0.35	0.8

^{*}P≤0.05

The average zinc content in the dry matter of the entire wool fibres

Group		Zn (mg/kg)
Control	mean	85.56*
	sd	9.13
Experimental	mean	98.39*
	sd	11.52

^{*}P≤0.01

The zinc content of the wool of normal sheep range from 77 to 120 mg/kg

The content of some element ions on the wool surface

Histological structure of wool

Control group

Experimental group

Conclusions

In experimental group:

- Wool length was ca. 30% higher
- Thickness was ca. 8% higher
- Zinc content in DM was about 15% higher

Zinc-methionine bioplex administration is recommended during pregnancy and lactation in order to reduce depression in wool growth

Thank You for Your attention!

