Genetic selection on social genetic effects to reduce feather pecking in layers

Esther D. Ellen¹, Jeroen Visscher², and Piter Bijma¹

¹ Animal Breeding and Genomics Centre, Wageningen University, NL

² ISA, a Hendrix Genetics Company, Boxmeer, NL

Acknowledgement

www.hendrix-genetics.com

www.breed4food.com

Financial contribution:

The genetics of robustness in laying hens

Social interactions in domestic animals: Turning competition into cooperation

Genomic solutions for socially-affected traits: Genetic architecture and improvement of survival in cannibalistic laying hens

Feather pecking

Welfare problems Mortality Economic losses

Multi-factorial

Genetic selection

Feather pecking behaviour

Behavioural observations

- Time consuming
- Expensive

• Difficult to collect data on both victim and pecker

Difficult to apply in animal breeding

Solution: Statistical methods

Statistical methods

Allows to identify victim and pecker
Using direct-indirect effects model

• Victim - *h*² 4 - 10%

$$T^2 10 - 54\%$$

Pecker (group member) –

33% - 94% of total genetic variation

A Hendrix Genetics Compar

Bijma et al., 2007; Ellen et al., 2008; Peeters et al., 2012; Brinker et al., 2014

Selection against feather pecking

Takes into account social genetic effects

Collect individual egg performance

Selection based on relatives

To select against mortality due to feather pecking in purebred layer line

Using selection based on relatives

Selection candidates

Sibs kept in family groups

Material

Population:

Group size:

Trait: survival time

Generations: 6

Design selection experiment

For each generation:

- Sibs of High were housed individually
- Selection: hens were ~55 weeks of age

Survival per generation

Survival per generation

Large effect of location on survival

Not possible to calculate response to selection over generations

Design selection experiment

Possible to calculate response to selection

Survival time and ΔG

Survival time and ΔG

Conclusion

- Selection against mortality due to feather pecking is feasible
- Large impact of environment

To reduce **mortality due to cannibalism** a selection method is needed that takes into account **social genetic effects**

