Plasma lactate at slaughter is associated with loin intramuscular fat in lamb

Sarah Stewart

Peter McGilchrist, Graham Gardner and Dave Pethick
Tuesday - Session 18, September 1st 2015

Outline

- Intramuscular fat (IMF) and lamb eating quality
- Genotype and tissue stress response
- Impact of breeding values on IMF
- Hypotheses
- Association between IMF, plasma lactate and NEFA and muscling
- Future research

Lamb eating quality

- Intramuscular fat (IMF) a key driver of lamb eating quality
- Ranges from 2-8% in AUS lamb

Selection for leaner, more muscular lambs

Genotype response to stress

ADRENALINE Martin et al 2011

Muscle response

Adipose response

plasma Lactate

plasma non-esterified fatty acids (NEFA)

Genotype impact on IMF

Breeding values for muscling

Pannier et al 2014

Genotype impact on IMF

Breeding values for muscling

Pannier et al 2014

Assuming ADRENALINE linked....

Muscling breeding values

Leaner Muscular

- 1. Positive association between IMF and [lactate]
- 2. Negative association between IMF and [NEFA]

3. [NEFA] and [lactate] will account for

Methods

- Prime Lambs n = 2016
- MLA genetic flocks
 - NSW
 - WA
- ~ 300 sires (AI dams)
 - Breeding values for muscling
- Extensively managed
- 21 30 hrs off feed
- Blood collected at slaughter

Methods - Analysis

Fixed effects

- Flock
- Drop (year of birth)
- Killgroup effect
- Siretype
- Sex
- Dambreed

Covariates

- Breeding values muscling
- Plasma lactate
- Plasma NEFA

Mixed Linear effect models

% Intramuscular fat

Random terms

Sire ID

Dam ID*drop

RESULTS

Breeding values affect <u>IMF</u>

Plasma lactate and %IMF

Plasma lactate and %IMF

Assuming ADRENALINE linked....

1. Positive association between IMF and [lactate]

Plasma NEFA and %IMF

Plasma NEFA and %IMF

Terminal sired lambs at WA site

Assuming ADRENALINE linked....

2. Negative association between IMF and [NEFA]

Are lactate and NEFA describing the breeding value (genetic) effect on IMF?????

Breeding values affect IMF

Assuming ADRENALINE linked....

3. [NEFA] and [lactate] will account for

IMF

IMF and NEFA association

- Plasma NEFA reflects whole body adipose tissue turn-over
- IMF small component of whole fat depot
- Affected by acute stress and feed deprivation
- Not an accurate/precise indicator of "stress"

IMF and Lactate association

Lactate indirectly reflecting IMF turn over

 Separate mechanism to breeding value (genetic) effect?

- More accurately reflects stress response in muscle
 - Not impacted by feed deprivation (no glucagon receptors)

Further work

- What influences indicators of stress?
- Relate to carcass and meat quality
 - Shear force, IMF, colour, pHu
 - Sire genetics
 - Consumer sensory panels
- Best practice pre-slaughter management

Contributors

Peter McGilchrist Graham Gardner Dave Pethick

Thank you!

Results

VARIABLE	MEAN ± SD	MIN	MAX
Loin IMF (%)	4.87 ± 1.2	1.7	12.0
PEMD	1.3 ± 1.26	-2.4	5.5
Lactate (mmol/L)	3.48 ± 2.3	0.5	16.4
NEFA (mmol/L)	1.18 ± 0.54	0.17	3.26

Assuming ADRENALINE linked....

- 1. Association between IMF
 - Plasma lactate (positive)
 - Plasma NEFA (negative)
- 2. **NEFA** and **lactate** will account for

Assuming ADRENALINE linked....

1. Positive association between IMF and [lactate]

2. Negative association between IMF and [NEFA]

3. [NEFA] and [lactate] will account for

Response to stress?

Martin et al 2011

Muscle plasma Lactate

Adipose plasma Non-esterified fatty acids (NEFA)

Leaner Phenotype

Impact on IMF

- Intramuscular fat (IMF) a key driver of lamb eating quality
- Ranges from 2-8% in lamb
- Selection for leaner, more muscular lambs

Assuming ADRENALINE linked....

IMF

1. Association between % IMF v

Lactate (+ve)

Assuming ADRENALINE linked....

%IMF

Assuming ADRENALINE linked....

Lactate (+ve) 1. Association between % IMF ν_{NEFA} (-ve)

Assuming ADRENALINE linked....

PEMD

%IMF

1. Association between % IMF v

Lactate (+ve)
NEFA (-ve)

2. NEFA/Lactate will account for

%IMF