

Finishing of lambs through the autumn: carcass and meat quality using tropical grassland

B.N. Marsiglio-Sarout¹, C.H.E.C. Poli¹, N.M.F. Campos¹, J.F. Tontini¹, J.M. Castro¹, M.T. Braga¹, C. Bremm¹, Z.M.S. Castilhos²

¹Universidade Federal do Rio Grande do Sul, Brazil ²Fundação Estadual de Pesquisa Agropecuária, Brazil

Bruna Nunes Marsiglio Sarout
PhD Student at Federal University of Rio Grande do Sul, Brazil

Rio Grande do Sul State

Image: Portal EBC/ Agência Brasil

In the south of Brazil sheep production faces limitations in the autumn:

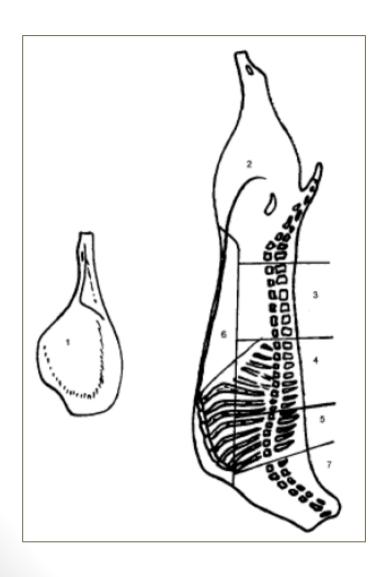
- ✓ Supply struggles to meet demand due to a low productivity level;
- ✓ Inadequate animal nutrition may directly affect the herd performance;
- ✓ Appropriate feeding system is needed to improve productivity while using tropical grassland.

- ✓ Randomized blocks.
- √ 54 castrated lambs (Texel and Corriedale).
- ✓ Lambs in 9 paddocks (0.2 ha each) with tropical grass Aruana (*Panicum maximum*).
- √ The forage supply was 4% of green leaves
 (4 kg dry matter per 100 kg of live weight).
- ✓ Trial run for 3 months, including acclimatization period;

Photographs: Author's own private collection

- ✓ Three feeding systems:
 - 1. Continuous grazing;
 - Continuous grazing + supplementation of 1.5% Body Weight (BW);
 - 3. Continuous grazing + supplementation of 2.5% BW.

Supplement (DM basis): 24% soybean meal 74% corn, 1% urea and 1% minerals (16.5% CP and 74.5% total digestible nutrients).


Photographs: Author's own private collection

Hot Carcass Measurements (at slaughter):

- ✓ Hot carcass weight.
- ✓ Hot carcass yield (HCY):
 HCY = ((Hot carcass weight/Slaughter body weight)x100)

Cold Carcass Measurements (after chilling for 24 h at 4°C)

- ✓ Cold carcass weight.
- ✓ Cold carcass yield (CCY):CCY = ((Cold carcass weight/Slaughter body weight)x100)
- √ The carcasses were divided longitudinally.

The left half-carcass was sectioned into seven:

- 1. Shoulder;
- 2. Leg;
- 3. Loin and flap Loin section was made at 12th-13th rib;
- 4. Rib;
- 5. Anterior rib;
- 6. Breast;
- 7. Neck.
- The left shoulder was used for tissue composition analysis.


- ✓ Longissimus dorsi measurements (at 12th-13th rib):
 - 1. Weigh;
 - 2. Area;

3. Width

4. Depth

5. Back fat thickness

Table 1 – Feeding Systems effects on *in vivo* and carcass traits.

_	Feedi	SEM ²	P		
	0	1.5%	2.5%	SEIVI	•
Slaughter Body weight, kg	29.53b	33.41 ^b	38.72a	1.52	***
Body weight gain, kg/day	0.056 ^c	0.101^{b}	0.154a	0.01	***
Hot carcass weight , kg	11.69 ^c	13.99 ^b	17.72a	0.89	***
Hot carcass yield, %	39.2 ^b	41.55 ^b	45.29a	0.90	***
Cold carcass weight, kg	11.42 ^c	13.78 ^b	17.47a	0.91	***
Cold carcass yield, %	38.22 ^c	40.81 ^b	44.58a	0.94	***

 $^{^{1}}$ 0 = No supplementation; 1.5% = supplementation of 1.5% Body Weight; 2.5% = supplementation of 2.5% BW. 2 SEM = greatest standard error of the means.

^{***} P<.0001

Table 2 – Feeding Systems effects on Brazilian commercial cuts weight.

	Feeding System ¹			SEM ²	P
	0	1.5%	2.5%	SEIVI	P
Neck, kg	0.460^{b}	0.571 ^b	0.746a	0.037	***
Shoulder, kg	1.106 ^b	1.240 ^b	1.518^{a}	0.069	***
Anterior Rib, kg	0.386^{b}	0.433^{b}	0.583^{a}	0.032	***
Rib, kg	0.476^{b}	0.596^{b}	0.769^{a}	0.051	***
Breast, kg	0.760^{b}	0.922 ^b	1.200a	0.068	***
Loin and flap, kg	0.724^{b}	0.917^{b}	1.218a	0.082	***
Leg, kg	1.854 ^b	2.214 ^b	2.708ª	0.145	***

 $^{^{1}}$ 0 = No supplementation; 1.5% = supplementation of 1.5% Body Weight; 2.5% = supplementation of 2.5% BW. 2 SEM = greatest standard error of the means.

^{***} P<.0001

Table 2 – Feeding Systems effects on Brazilian commercial cuts yield.

	Feeding System ¹			SEM ²	P
	0	1.5%	2.5%	SEIVI	P
Neck, %	7.99	8.20	8.53	0.25	ns
Shoulder, %	19.39a	17.93 ^b	17.41 ^b	0.31	***
Anterior Rib, %	6.63	6.19	6.63	0.15	ns
Rib, %	8.14	8.40	8.64	0.26	ns
Breast, %	13.01	12.99	13.59	0.30	ns
Loin and flap, %	12.26	12.97	13.58	0.41	ns
Leg, %	32.12ª	31.85 ^a	30.71 ^b	0.34	**

 $^{^{1}}$ 0 = No supplementation; 1.5% = supplementation of 1.5% Body Weight; 2.5% = supplementation of 2.5% BW. 2 SEM = greatest standard error of the means.

ns = not significant; ** *P<.0001; * *P<0.01

Table 3 – Feeding Systems effects on shoulder tissue composition.

	Feeding System ¹			CEN ₄ 2	P
	0	1.5%	2.5%	SEM ²	P
Muscle, %	58.90	58.96	57.56	1.24	ns
Bone, %	27.99a	25.51 ^b	24.45 ^b	0.85	**
Fat, %	13.13 ^b	15.58ab	17.96a	1.16	**
Muscle:Bone Ratio	2.15 ^b	2.34 ^{ab}	2.41 ^a	0.10	*

 $^{^{1}}$ 0 = No supplementation; 1.5% = supplementation of 1.5% Body Weight; 2.5% = supplementation of 2.5% BW. 2 SEM = greatest standard error of the means.

ns = not significant; ** P < 0.01; * P < 0.05

Table 4 – Feeding Systems effects on *Longissimus dorsi* muscle.

	Fee	eding Syste	SEM ²	P	
Longissimus dorsi	0	1.5%	2.5%	SEIVI	P
Weight, g	158.30 ^b	206.66b	272.73a	19.4	***
Maximum width, mm	51.20 ^b	53.95 ^{ab}	58.07a	2.02	*
Depth, mm	25.37 ^b	29.31 ^{ab}	32.99a	1.57	***
Area, cm ²	11.06 ^b	12.94 ^{ab}	15.26a	1.06	**
Back fat thickness, mm	2.11 ^b	3.18 ^a	4.46a	0.04	***

 $^{^{1}}$ 0 = No supplementation; 1.5% = supplementation of 1.5% Body Weight; 2.5% = supplementation of 2.5% BW. 2 SEM = greatest standard error of the means.

^{***} P<.0001; ** P<0.01; * P<0.05

Table 5 – Feeding Systems effects on pH drop at *Longissimus* muscle.

	Fe	eding Syste	SEM ³	P	
pH time ²	0	1.5%	2.5%	SEIVI	<i>P</i>
pH 0	7.14	7.14	7.16	0.03	ns
pH 45 min	7.03	7.00	7.00	0.02	ns
pH 24 h	5.85	5.81	6.09	0.12	ns

 $^{^{1}}$ 0 = No supplementation; 1.5% = supplementation of 1.5% Body Weight; 2.5% = supplementation of 2.5% BW. 2 pH0 = after slaughter; pH 45 minutes after slaughter; pH 24 hours after slaughter.

³SEM = greatest standard error of the means.

ns = not significant.

Conclusions

✓ The feeding system with supplementation of 2.5% of the body weight while using tropical grass Aruana improved lamb performance, carcass traits and loin muscle quality.

✓ For extensive systems using tropical grass Aruana the supplementation can provide carcass with better quality through the autumn in order to supply this demand.