Nitrogen conversion efficiency in French livestock production from 1938 to 2010

Domingues, J.P. ¹, Bonaudo, T. ¹, Gabrielle, B. ², Tichit, M. ¹

1 INRA, UMR SADAPT, Paris, France, 2 AgroParisTech, UMR ECOSYS, Grignon, France

- Setting the scene
- Methodology
- Results on N indicators
 - Nitrogen conversion efficiency
 - Human-edible protein
 - Protein self-sufficiency
- Conclusion

Setting the scene

- Multiple contribution of Livestock production (Cooper et al. 2009)
 - Food security
 - Multiple services
- Environmental pollution
- Competition issue
 - Natural resources and land

Setting the scene

- Current situation
 - growing demand of livestock products
 - resource scarcity
- Close the efficiency gap
- Research focus on nitrogen
 - Protein in human diet (Billen et al. 2014)
 - Misusage associated with detrimental environmental impacts (Bowman et al. 2011)

Objective

to assess nitrogen accounts with multiple indicators to improve understanding of nitrogen use in the French livestock sector

Approach:

Nitrogen conversion efficiency

Change over time in the use of feed resources and provision of livestock products

Human-edible protein balance

Competition with human nutrition

Protein self-sufficiency

Livestock feeding and feed imports

Methodology

- Data sources
 - national agricultural census (Cavailhes et al. 1987)
 - 1938 1980
 - national agricultural census
 - 1988 2010
- Period
 - years 1938 and 2010
- N coefficients
 - FAO food balance sheets

Nitrogen conversion efficiency

NCE

1938 **→** 2010

 $NCE = \frac{N \text{ in livestock products}}{N \text{ in feed resources}} = \frac{14.6\% \rightarrow 17.3\%}{12.3\%}$

Nitrogen conversion efficiency

Livestock products

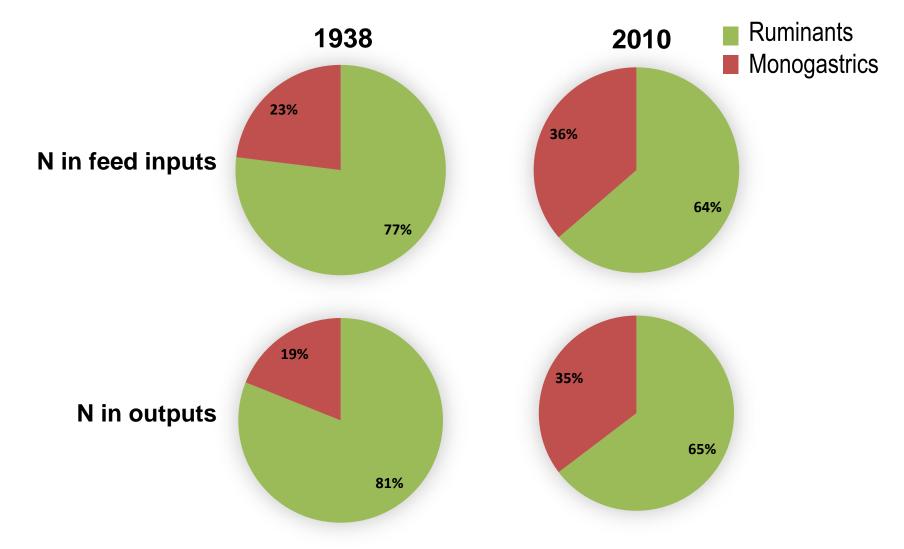
1938 **→** 2010

 $0.14 \text{ Tg} \rightarrow 0.28 \text{ Tg}$

0.96 Tg → 1.62 Tg

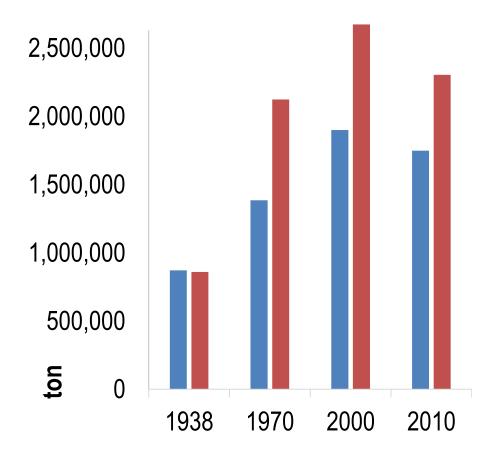
Nitrogen conversion efficiency

1938 **→** 2010



29% → 58% Concentrate

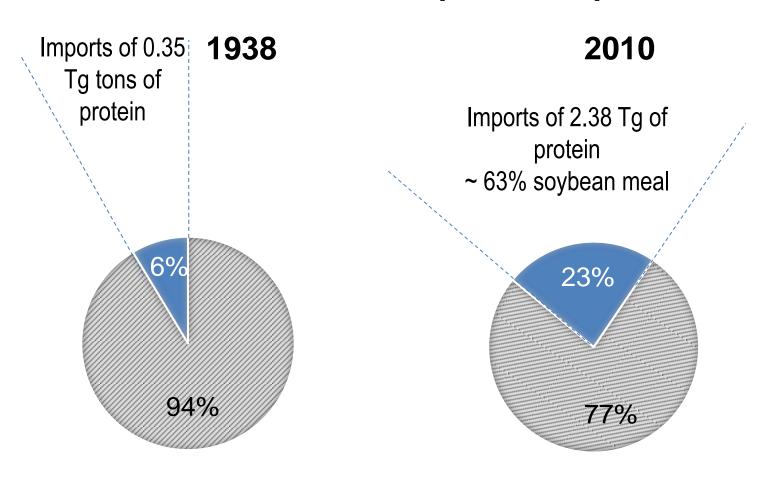
N in feed inputs and outputs per livestock type



Human-edible protein

Ratio =
$$\frac{Edible\ protein\ output}{Edible\ protein\ input} \longrightarrow 1.01 \quad 0.65 \quad 0.71 \quad 0.76$$

Balance = Edible protein output - Edible protein input



Protein self-sufficiency Z Local Global

~ 7 fold increase protein imports

Results summary

- NCE has increased
 - higher share of concentrates is fed to livestock
 - higher share of monogastrics
- At the expense of
 - increased use of human edible protein
 - increased dependence on globally sourced protein

Conclusion

 Even if NCE in the livestock sector has generally increased, we need to keep in mind that feeding inputs and livestock products are just a part of the system

 Research on nitrogen use with a broader perspective to account to the overall use efficiency in the agroecosystem

THANKS FOR YOUR ATTENTION!

dominguessantos@agroparistech.fr

