Alternative haplotype construction methods for genomic evaluation

D. Jónás^{1,2,3}, V. Ducrocq¹, M. N. Fouilloux⁴, P. Croiseau¹

¹INRA, UMR1313 GABI, Jouy-en-Josas, France

- ²AgroParisTech, Paris, France
- ³ALLICE, Paris, France
- ⁴Idele, UMR1313 GABI, Jouy en Josas, France

Introduction

- Genomic selection
 - Improved breeding value estimation by exploiting knowledge on DNA sequence variation
 - Bi-allelic SNP markers
 - Requirement: large reference populations
- An alternative to SNP: haplotypes
 - A combination of N SNP
 - Multi-allelic genetic marker
 - Which haplotypes should be used?

Objectives

- Develop a method to a priori construct the "best" haplotypes for genomic selection
 - How to define the "best" haplotype?
 - Maximize the number of alleles
 - Consider the distribution of allele frequencies

Materials and Methods

- Haplotype construction
 - Definitions show birth attion on the companity of the SNP An allele effect was considered "predictable", if it had a sufficiently high allele frequency
 - Tested haplotype sizes: 3-5 SNP
 - Window size: 10 SNP
 - Two, slightly different criteria
 - Termed as Criterion-A and Criterion-B
 - Difference: Criterion-B includes a constraint on the equilibrium of allele frequencies

Materials and Methods

- The dataset
 - Dairy cattle breed (Montbéliarde)
 - n=2,235 individuals (Training: 1,666; Validation: 569)
 - 5 dairy cattle production traits
 Milk quantity, fat yield, fat content, protein yield, protein content
 - 43,801 SNP from the 50K chip
 - Assumed a priori information (QTL-SNP)
 - Represent approximate QTL positions
 - The most significant 1-, 3- and 6 thousand QTL-SNP

Materials and Methods

- Analyses based on different sources of genomic information (Bayes-C)
 - Only QTL-SNP
 - Haplotypes built from:
 - Flanking markers
 - Criterion-A
 - Criterion-B
- Comparison of the results
 - Correlation between phenotypes (DYD) and GEBV

DYD-GEBV correlations observed with the flanking marker haplotypes

Number of QTL-SNP	QTL-SNP -	Flanking marker haplotype		
		HS=3	HS=4	HS=5
1K	0.480	0.491	0.492	0.488
3K	0.499	0.523	0.526	0.528
6K	0.512	0.534	0.538	0.541
Optimal	0.512	0.534	0.538	0.542

- Optimal number of QTL-SNP: for each trait separately, the number of haplotypes leading to the highest correlation coefficient is considered
- Average correlations of the 5 production traits are shown

Average number of alleles per allele frequency group

- Frequency of the rare alleles decreased with either of the 2 proposed cirteria
- Similar results were observed with haplotypes of 3 and 5 SNP

Correlations observed with the flanking- and selected SNP

- Haplotypes built from the selected markers were superior in genomic selection
- Gain with the haplotype selection methods decreased as the haplotype size increased

Conclusions

- Selection of SNP is beneficial to build haplotypes for genomic selection
 - Reduced number of markers in the model
 - Larger number of alleles with proper frequencies
 - Higher DYD-GEBV correlations
- Decreasing gain with the increase of haplotype size
- Similar results with the HD-chip
- Similar results with other breeds

Thank you for your kind attention!

