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from unbalanced data

Filippo Biscarini

H. Schwarzenbacher, H. Pausch, S. Biffani



~1 PTP SCIENCE PARK

Binary classification problems

Case/control

Disease diagnosis, response to
treatments, susceptibility to
diseases, survive or not ...

Sex

Male/female: e.qg. sexed
semen in cattle

Traceability

e.g. beef/non-beef meat

Mutations

Carriers/non-carriers (e.g. CVM in
cattle)

Colour/breed

e.g. brown/white eggs;
Pietrain/Landrace pigs

Gene alleles

e.g. casein variants in
ruminants
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Binary classification problems

® Collect binary observations

® Measure some quantities (on these obs) that are thought to be related to
the binary outcome

Model the outcome-features relationship

W

Features/predictors/

Binomially distributed factors/dependent vars

variable

® Several methods available: logistic regression, (L)DA, SVM, KNN,
classification trees ...
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an illustration from cattle genetics

: ; Mutation behind the BH2 haplotype on BTA19
“ " "1Two cattle breeds: Brown Swiss, Fleckvieh

SNP on BTA19: editing for call-rate (>95%)
Fleckvieh: 1317; Brown Swiss: 1370

p(x;)

1-p(x,)

=u+ Z_lz.SNPj

Imputation (Beagle) logit p(x,))= log

MAF: 0.224 in Fleckvieh, 0.187 in Brown

Ridge logistic regression 80% data — training set: 5-gold CV to tune A,
(p > nin Brown Swiss) define the model
20% data — test set: estimate prediction accuracy

%/—/

x 100 times
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Total prediction accuracy

Total error rate: 10—fold CV x 100

bv fv
error
300 high
8 100 i 100 o o
medium
200 200
Breed
Fleckvieh: 99.78% (£ 0.2)

Brown Swiss: 98.91% (£ 1.1)
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End of the story?

Extraordinarily effective classification!

Yes, if data were balanced

However:
Breed % carriers % non-
carriers
Fleckvieh 4.04% 95.96%
Brown Swiss 63.78% 36.22%

Very unbalanced data, in opposite directions!



~1 PTP SCIENCE PARK

Classification with unbalanced
data

Naive classifier: always predicts the majority class

Breed E(Accuracy)
Fleckvieh 95.96%
Brown Swiss 63.78%

Beware: the accuracy in the minority class would be 0%!

Not only total accuracy, but also accuracy in the two classes:
True positive rate: (identified carriers)/(all carriers)

True negative rate: (identified non-carriers)/(all non-carriers)
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Classification with unbalanced
data

Besides, what type of error is more relevant?

False positive or false negative?

® False negatives: critical in recessive mutations: more relevant to
correctly identify carriers (to breed out), who could spread the
defect

® False positives: caseins, better make sure that selected animals do

carry the positive variant
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Classification with unbalanced
data

Besides, what type of error is more relevant?

False positive or false negative?

® False negatives: critical in recessive mutations: more relevant to
correctly identify carriers (to breed out), who could spread the
defect

® False positives: caseins, better make sure that selected animals do

carry the positive variant

Animal geneticist's corollary to Murphy's law: the relevant case
Is always the minority class!
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True positive rate

False negative rate: 10—fold CV x 100

bv fv

1.00 -

0.75 -

0.50 error
£0.25- high
2" 300 300 o
§0-00' " 100 y -1 [ .
L medium

200 200
Breed
Fleckvieh: 95.51% (£ 3.67)

Brown Swiss: 100% (£ 0.0) [majority class!]
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True negative rate

False positive rate: 10-fold CV x 100
bv

fv
1.00 -
0.75 -
0.50 - error
20.05- high
2" 300 300 o
CL)o.oo - o 100 T 100 o low
Ll medium
200 200
Breed
Fleckvieh:

99.95% (+ 0.08) [majority class!]
Brown Swiss: 96.96% (* 3.07)
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Dealing with unbalanced data

1.0

® Always look at the different types of errors!

® Try different classifiers — different TPR/TNR
ratio

0.8

® Critically set the decision boundary

0.6

® ROC curves may help

True positive rate

0.4

® Active learning: design algorithm to optimize

TPR/TNR in stead of overall accuracy [e.g. Ertekin et
al., 2007]

® Sampling/re-sampling strategies: e.g. over- or
under-sampling (informed or random)

0.2

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

* One-class learning [e.g. Tax, 2001]

 Ensemble methods like boosting may also help: combining several classifiers to improve

classification performance
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