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Accuracy of imputation from SNP array 

data to sequence level in chicken 



Introduction 

 Array data available for a large number of individuals  

in many livestock populations 

 Whole-genome sequence data 

• Now available due to technical progress in the last years 

• Much higher density than common SNP array panels 

• Still expensive  not possible to sequence all individuals of a 

population 

 Imputation as key strategy 

 Is it promising to impute SNP array data up to sequencing  

level within a purebred brown layer line? 
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 1075 individuals from a commercial brown layer line  

 Genomic data:    

• Array: Affymetrix Axiom® Chicken Genotyping Array with 580K SNPs 

• Sequence: Illumina HiSeq2000, ~ 8x coverage  

 Filtering criteria: 

• Only Chromosomes 3, 6 and 28  

• Array: SNP call rate > 97%; MAF > 0.5%; Individual call rate > 95% 

• Sequence: Read depth; Mapping quality (> 30) per SNP 

Chromosomes 3 6 28 Total 

Array data 35.3K 14.2K 2.9K 52.4K 

Sequence data 1164.8K 440.6K  44.3K  1,647.7K 

Data 
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Generation 1 2 3 4 5 6 Total 

Array data 85 61 66 637 114 112 1,075 

Sequence data 22 1 2 - - - 25 



Methods 

 Imputation programs tested 

• Minimac (Howie et al. 2012) 

 Applies a hidden Markov model 

 Needs pre-phased data  

        phasing done with Beagle 3 (Browning and Browning 2007) 

• FImpute (Sargolzaei et al. 2014) 

 Applies an overlapping sliding window method 

 Combines pedigree and linkage disequilibrium information 

• IMPUTE2 (Howie et al. 2009) 

 Applies a hidden Markov model 
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Methods 

 How well do the imputation programs perform? 

 Three different validation strategies 

• Leave-one-out cross-validation 

• Sire-progeny-conflicts 

• Randomly masked SNPs 
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• 1st run   

 

 

      

• Use only array genotypes for individual 1 

• Impute all other SNP genotypes for individual 1 based on information 

from the 24 other sequenced individuals  

0  1   1 2  0    2    1  1  1  2    1 

Leave-one-out cross-validation 

 Within sequenced individuals 
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1 2 3 4 5 …… 24 25 

Total number of individuals with sequence and array data 

1 2 3 4 5 …… 24 25 

Genome→  

True sequence data→ 

 Array data→ 

Imputed sequence data→ 

 

0  2   1 1  0    2    1  0  1  2    0 

0       1     0    2    1      1 



 Within sequenced individuals 

 

 

 

 

 

 

 Calculation of correlation between true and imputed 

sequence data (except array positions)  

 Repeat until each individual has been imputed once 

Leave-one-out cross-validation 
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1 2 3 4 5 …… 24 25 

Total number of individuals with sequence and array data 

1 2 3 4 5 …… 24 25 

Genome→  

True sequence data→ 

 Array data→ 

Imputed sequence data→ 

 

0  2   1 1  0    2    1  0  1  2    0 

0       1     0    2    1      1 

0  1   1 2  0    2    1  1  1  2    1 



Leave-one-out cross-validation 

 Within sequenced individuals 

 

 

 

 

 

 

• Imputation accuracy within sequenced individuals was high (~0.9) with all 

imputation packages 

• Performance of FImpute slightly worse than the one of Minimac and IMPUTE2 

02/09/2015 8 

Minimac             FImpute               IMPUTE2 

Im
p

u
ta

ti
o

n
 a

c
c
u

ra
c
y
 



Sire-Progeny-Conflicts 

 Sire-progeny pairs 

• 134 pairs with sequenced sire and genotyped progeny available 

 (1-44 progenies/sire)  

• Comparison of sire’s sequence and progeny’s imputed sequence 

 What must not appear due to Mendelian rules? 

• Opposite homozygous genotypes in sire-progeny pairs 

 Calculation of the percentage of SNPs with  

sire-progeny-conflict for all sire-progeny pairs 
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Sire-Progeny-Conflicts 

 Within sire’s sequence data and progenies' imputed 

sequenced data 

 

 

 

 

 

 

• FImpute (on average 0.01%) outperformed Minimac and IMPUTE2  

• Minimac better (0.11%) than IMPUTE2 (2.5%) 
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× × 

Randomly masked SNPs 

 Within 1075 genotyped individuals 

 

 

 
 

 

• Select some SNPs in array data randomly 

• Assume these SNPs to be unknown→ masked array data 

• Impute up to sequence level based on information from 25 

sequenced individuals 

• For the masked SNPs: calculate correlation between imputed and 

true array data either within SNP or per individual 
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0      1      0    2    1      0 

0              0          1      0 

Genomes →  

Array data→ 

 Masked array data→ 

Imputed sequence data→ 

 

0  2  1  1  0    1    1  0  0  2    0 



× × 

Randomly masked SNPs 

 Within 1075 genotyped individuals 

 

 

 
 

 

• Number of masked SNPs 

 

 

 

• 5 replicates 
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0      1      0    2    1      0 

Genomes →  

Array data→ 

 Masked array data→ 

Imputed sequence data→ 

 

Chr. 3 Chr. 6 Chr. 28 

680 270 50 

0              0          1      0 

0  2  1  1  0    1    1  0  0  2    0 



 Mean of genotype correlation 

   per SNP:           per individual: 

 

 

 

 

 

 

• Lower imputation accuracy for SNPs with low MAF, especially with FImpute 

• High imputation accuracy per individual across several generations 

Randomly masked SNPs 
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Generations  Minor allele frequency  



 Imputation accuracy measured as correlation: Minimac and 

IMPUTE2 performed slightly better than FImpute 

 Advantages of FImpute regarding the occurrence of 

Mendelian inconsistencies 

 Imputation accuracy clearly lower for rare than for common 

SNPs  

 Sequence imputation yields reasonably accuracy, even 

across several generations 

• From a very limited number of sequenced individuals  

• In closed breeding populations  

 

Conclusions 
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Add on Chicken genome 
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•http://www.ncbi.nlm.nih.gov/genome?term=gallus%20gallus 



Add on 

 Array data VS whole-genome sequence data 
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Array data Whole-genome sequence data 

DNA variation Only SNPs SNPs, indels, CNVs… 

Number of 

variations 

Up to the commercial chips 

design 

Up to aliment and detection 

algorithms, much more than 

array data 

MAF of 

variations 

Similar to Uniform 

distribution 

Similar to gamma distribution 

Costs Relative cheap Getting cheaper, but still 

expensive 
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Add on 



 Density of HD data and sequence data 

 SNP/Kb 
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Chr. 3 Chr. 6 Chr. 28 

HD 0.31 0.39 0.58 

Sequence  8.66 10.45 7.99 


