

Season affects expression and heritability of automatically recorded estrus traits in Danish Holstein

Ahmed Ismael^{1,2}, Erling Strandberg², Britt Berglund² & Peter Løvendahl¹

¹Dept. Molecular Biology and Genetics Aarhus University, Denmark ²Dept. Animal Breeding and Genetics, SLU, Sweden

What is the automatically recorded estrus traits?

- Using activity monitor
 devices (pedometer/
 activity tags) that use the
 behavioral changes to
 - detect estrus in dairy cows.

Interval from calving to first high activity (CFHA)

Estrus duration (ED)

• Reflects the ability of cow to return to cyclic after calving.

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

- Less biased compared to the Interval from calving to first insemination (CFI).
 (h²= 0.16 vs 0.07) ^(C)
- Highly correlated with CFI (r_g=0.96).
- The interval in hours between the episode started until the episode ended (h²= 0.02).
- The average of the highest 2 values.
 (h²= 0.05)

(Løvendahl and Chagunda. 2009; Ismael et al., 2015)

Are fertility traits affected by seasons?

- Days open: Spring calvers remained open 27
 days longer than summer calvers In US Holstein (Oseni et al. 2004).
- Commencement of luteal activity: Shortest for summer calvers compared with winter calvers by
 8.0 and 10.5 days in UK and Sweden (Royal et al. 2002; Petersson et al. 2006).

Objectives

 Investigate the effect of calving season on phenotypic expression and genetic parameters of estrus traits CFHA, first estrus duration (FED), and first estrus strength (FES) derived from activity tags.

Data & Methods

Genetic analysis

• Bivariate animal model (DMU Package). The pedigree file included 134,532 animals.

$$\mathbf{y}_{ijkl} = \mathbf{y}\mathbf{m}_i + \mathbf{p}_j + \mathbf{h}_k + \mathbf{a}_l + \mathbf{e}_{ijkl}$$

Year month of episode (Fixed)
Parity (Fixed)
Herd (Fixed)
Animal genetic effect (Random)
Residual (Random)

Effect of calving month on CFHA

Effect of calving month on first estrus duration

Effect of calving month on first estrus strength

Heritability of CFHA

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

QCG

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Heritability Additive varaince

Genetic correlations of CFHA between calving seasons

Conclusions

- On the phenotypic level, CFHA is heavily influenced by seasonal variation compared to FED and FES.
- There is a re-ranking of animals between winter and summer or fall calving.
- There might be a scaling effect due to heterogeneity of genetic variance and heritability estimates for the traits between calving seasons.

