Genetic heterogeneity of residual variance in the GIFT strain of Nile tilapia

Jovana Marjanovic, Han Mulder, Hooi Ling Khaw, and Piter Bijma

Acknowledgement

www.wageningenur.nl

www.slu.se

www.egsabg.eu

www.worldfishcenter.org

Background

- Animal breeding improvement of the mean level of traits
- Genetically Improved Farmed Tilapia (GIFT)
- Genetic gain >100% through 12 generations of selection on BW
- Aims improve the mean of a trait, but also reduce its variability

Background

- Large variation around the optimal value -> negative effects
- Competition -> size differences

- CV of body weight as an indicator of the level of competition
- In GIFT, CV ~40%-60%

How to deal with variability?

Grading – sorting fish in a groups according to their size

Disadvantages

- Labour
- Expenses
- Welfare
- Temporary effect

Breeding for uniformity

- Alternative to grading
- Genetic heterogeneity of environmental (residual) variance
- Common assumption homogeneous Var(E)

■ Empirical evidence – substantial genetic Var(E)

$$Var(E)=A+E'$$

Var(E) as a heritable trait

- Quantitative trait
- We can select for more uniform fish

- GIFT large size differences among individuals
- Genetic background of this variability?

Objectives

Estimate

- genetic variance in residual variance of harvest weight and body size traits (length, depth and width)
- genetic correlation between the mean and the variance

 By applying double hierarchical generalized linear models (DHGLM)

Objectives

- Investigate the effect of Box-Cox transformation of harvest weight on
 - genetic variance in uniformity
 - mean-variance correlation

Data

- The GIFT strain of Nile tilapia
- Harvest weight and body size traits
- IGE experiment
- Jitra Aquaculture Extension Centre
- Three batches (2009-2011)

Data

Data

Data overview	
Number of individual observations	6,090
Number of families	107
Number of groups	446
Number of observations per family per group	892
Pedigree	34,517

Box-Cox transformation

$$\mathbf{y}^{(\lambda)} = \frac{\mathbf{y}^{\lambda} - 1}{\lambda}$$

- Normalize distribution of the data
- Harvest weight
- $\lambda = 0.34$
- New variable BC-HW

Statistical analysis - DHGLM

- Uses individual observations
- Mean and the residual variance can be modelled jointly
- Residual variance is modelled on the exponential scale
- Essentially a bivariate model
- Iterates between linear mixed model for the phenotypic records and generalized linear mixed model for the residual variance

Statistical analysis - DHGLM

$$\label{eq:substitute} \left\{ \begin{aligned} y &= Xb + (Z_P + Z_M)u + Vc + Sk + Um + e \\ \Psi &= Xb_v + \big(Z_P + Z_M)u_v + Vc_v + Sk_v + Um_v + e_v \end{aligned} \right.$$

■ y – HW, BC-HW, length, depth or width

$$\phi_i = \hat{\mathbf{e}}_i^2/(1-\mathbf{h}_i)$$

$$\boldsymbol{\Psi}_i = \log(\widehat{\sigma}_{e_i}^2) + (\{[\widehat{\sigma}_{e_i}^2/(1-h_i)] - \widehat{\sigma}_{e_i}^2\}/\widehat{\sigma}_{e_i}^2) \text{ (Felleki et al.,2012)}$$

fixed effects – sex, batch, pond and their interaction with age at harvest

Results

Genetic parameters - harvest weight

Parameter	HW	BC-HW
h ²	0.25 (0.04)	0.31 (0.05)
\mathbf{g}^{2}	0.13 (0.02)	0.15 (0.02)
\mathbf{k}^2	0.10 (0.02)	0.10 (0.02)
m ²	0.02 (0.01)	0.02 (0.01)

Genetic parameters - body size traits

Parameter	Length	Depth	Width
h ²	0.30 (0.05)	0.32 (0.05)	0.25 (0.05)
\mathbf{g}^{2}	0.15 (0.02)	0.16 (0.02)	0.27 (0.02)
k^2	0.10 (0.01)	0.08 (0.01)	0.10 (0.02)
m^2	-	0.02 (0.01)	-

GCV - variance level

	HW	BC-HW	Length	Depth	Width
σ_{A}^{2}	0.34 (0.07)	0.24 (0.05)	0.16 (0.04)	0.18 (0.04)	0.20 (0.05)
GCV, %	58	49	39	42	45

- GCV genetic coefficient of variation; $GCV = \sigma_A^2/\mu$
- \blacksquare For exponential model GCV is close to $\sqrt{\sigma_A^2}$

Genetic correlations between mean and the variance

	HW	BC-HW	Length	Depth	Width
r _A	0.60	0.21	0.11	0.37	0.20
	(0.09)	(0.14)	(0.16)	(0.13)	(0.15)

Conclusion

Thank you!

- Substantial genetic variation in uniformity
- GCV = **39% 58%**

- Distribution of the data has an impact on genetic heterogeneity
- After Box-Cox transformation σ_A^2 in uniformity
- $lap{r}_{A}$ between mean and the variance of HW \sim 0.60