

PERTH WESTERN AUSTRALIA

The Meat Standards Australia Index – improving carcass feedback

Peter McGilchrist

Rod Polkinghorne Alex Ball John Thompson

OVERVIEW

- Meat Standards Australia
- The MSA Index and its purpose
- Historic carcass feedback
- Factors which impact the MSA Index
- Importance of genetics
- Future work

sis Finat Soumanes River

TH PACIFI

15

Lord Howe I

COMPONENTS OF MSA SYSTEM Predictors

- Breed
 - Bos indicus content/Hump height
- Hormone growth promotants
- Gender
- Growth path
 - Carcass wt
 - **Ossification score**
 - Milk fed veal
- Hang
- Marble score
- Ageing: 5d min
- Cooking method
- 39 muscles

Basic criteria

- Stress minimisation
- Farm kill = 36 hours
- Optimal processing

Thresholds

- Ultimate ph<5.7
- Meat colour (3 or less)
- Rib fat > 3mm

Published as Meat Standards Australia – special issue in: Aust J expt agric (2008) vol 48, issue 11 Http://www.Publish.Csiro.Au/nid/73/issue/4061.Htm (open access)

WHAT IS THE PROBLEM?

The MSA model describes a complex biological system

- The **downside** is that any model needs to be complex to describe the biology
- The **upside** is the complexity results in a more accurate model

Priority for Meat Standards Australia was to communicate eating quality information back along the supply chain to producers

= MSA quality index

HISTORIC CARCASS FEEDBACK

- Rib Fat Ossification
- Hump height •HGPs

- Marbling
- HSCW
- pH • Sex
- Sex, hump height/Bos Indicus content and HGP all have different effects on different muscles
- Ossification and marbling have different coefficients for different muscles
- Some impacts of traits on eating quality are non-linear and interact
- There is no single indicator muscle for quality
- Need to summarise the complex model into a simple index

= MSA quality index

WHAT IS THE MSA INDEX?

A single number to indicate the overall quality of a carcass

A weighted average of eating quality scores

PURPOSE OF MSA INDEX

To provide a standard measure over time of carcass eating quality

- The Index will be an alternative to individual trait data for feedback
- A sound basis for evaluation of <u>on-farm genetic progress</u> & management strategies between seasons and years
- A solid <u>benchmarking tool</u> for suppliers of feeder and slaughter cattle
- Could be used in combination with yield for value-based payment systems

GRADED

CONSTRUCTION OF MSA INDEX

Carcass inputs

MSA Parameter	Individual Carcass data	
%Bos indicus		1
Sex	M	
HGP	N	
Milk FV	N	
Saleyard	N	
Carcass Wt	324	
Ossification	140	
Marbling	360	
Rib fat	12	
рНu	5.59	
Ult Temp	4.3	
Hang	AT	
Days Aged	5	

cut	muscle	GRL	RST	SFR	TSL	YAK	SSB	SCT
spinalis	SPN081	81	71	81	77	82		
tenderloin	TDR034	85		79				· · · ·
tenderloin	TDR062	81	80	83	78	73	70	
tenderloin	TDG062	79						
cube roll	CUB045	71	71	71	71	72		
striploin	STA045	66	67	68	65	68	59	
striploin	STP045	64	65	68	64	66	58	
oyster blade	OYSo36	70	67	73	74	74		
blade	BLD095			46	51			
blade	BLD096	59	63	65	64	67	52	65
chucktender	CTR085		53	56	61			64
rump	RMP131	58	66	65	68	63	55	61
rump	RMP231	61	69	68	67	71		
rump	RMP005	65	69	73	74	75		
rump	RMP032			70	72			
rump	RMP08 7		58	63	63			62
knuckle	KNU066	52	65	60	63	62		52
knuckle	KNU098			59	64			62
knuckle	KNU099	41	52	49	56	53		57
1	VNILLAR					07		
кпискіе	KNU100			66	69	67		60
outside flat	OU OU			66	69	67		60 `4
outside flat	OU OU	MSA	Gradi	ing M	odel ((39 cu	its x	60 `4 4
outside flat outside flat eye round	OU OU EY	MSA	Gradi	ing M	odel (67 (39 CU	its x	60 4 4 6
outside flat outside flat eye round topside	OU OU EY TC	MSA co	Gradi ommo	ing M on coc	odel (ok me	(39 cu ethod	its x)	60 `4 4 6 6
outside flat outside flat eye round topside topside	OU OU EY TO TO	MSA co	Gradi ommo	ing M on coc	odel (ok me	(39 cu ethod	its x)	60 `4 4 6 6 6 6
outside flat outside flat eye round topside topside topside	OU OU OU EY TO TOP073	MSA co 41	Gradi ommo	66 ing M on coc	odel (ok me	67 (39 cu ethod	Its x) ⁵¹	60 `4 4 6 6 6 6 6 59
outside flat outside flat eye round topside topside topside chuck	KN0100 OU OU EY TO TOP073 CHK068	MSA CC	Gradi ommo ⁴⁹	66 ing M on coc 49 50	69 odel (ok me 59 55	67 (39 cu ethod	Its x) ⁵¹	60 ⁴ 4 6 6 6 6 59 67
outside flat outside flat eye round topside topside topside chuck chuck	KNU100 OU OU EY TO TOP073 CHK068 CHK074	MSA CC 41 63	Gradi ommo ⁴⁹ 59	66 ing M on coc 49 50 64	69 odel (ok me 59 55 70	67 (39 cu ethod 60 62	1 ts x) 51	60 `4 4 6 6 6 6 59 67 75
outside flat outside flat eye round topside topside topside chuck chuck	KNU100 OU OU EY TO TO TOP073 CHK068 CHK074 CHK078	MSA CC 41 63 58	Gradi ommo 49 59 60	66 ing M on coc 49 50 64 61	69 odel (ok me 59 55 70 65	67 (39 cu ethod 60 62 61	1 ts x) 51	60 `4 4 6 6 6 59 67 75 72
outside flat outside flat eye round topside topside topside chuck chuck chuck	KNU100 OU OU EY TO TOF073 CHK068 CHK074 CHK078 CHK081	MSA CC 	Gradi ommo 49 59 60	66 ing M on coc 49 50 64 61 63	69 odel (ok me 59 55 70 65 67	67 (39 cu ethod 60 62 61 62	1 ts x) 51	60 `4 4 6 6 6 59 67 75 72 78
outside flat outside flat eye round topside topside topside chuck chuck chuck	KNU100 OU OU EY TO TO TO P073 CHK068 CHK074 CHK078 CHK081 CHK082	MSA CC 41 63 58	Gradi 59 60	66 ing M on coc 49 50 64 61 63 55	69 odel (ok me 59 55 70 65 67 58	67 (39 cu ethod 60 62 61 62	1ts x) 51	60 `4 4 6 6 6 6 59 67 75 72 78
outside flat outside flat eye round topside topside topside chuck chuck chuck chuck chuck	KNU100 OU OU EY TO TO TOP073 CHK068 CHK074 CHK078 CHK081 CHK082 TFL051	MSA CC 41 63 58	Gradional Gradion	66 ing M on coc 49 50 64 61 63 55 65	69 odel (ok me 59 55 70 65 67 58	67 (39 cu ethod 60 62 61 62	1ts x) 51	60 `4 4 6 6 6 59 67 75 72 78 65
outside flat outside flat eye round topside topside chuck chuck chuck chuck chuck thin-flank	KNU100 OU OU EY TO TO TOP073 CHK068 CHK074 CHK074 CHK078 CHK081 CHK081 CHK082 TFL051 TFL052	MSA CC 	Gradional Sommo 49 59 60	66 ing M on coc 49 50 64 61 63 55 65 65 74	69 odel (ok me 59 55 70 65 67 58 66	67 (39 cu ethod 60 62 61 62	1ts x) 51	60 `4 4 6 6 6 59 67 75 72 78 65 71
outside flat outside flat eye round topside topside chuck chuck chuck chuck chuck thin-flank thin-flank	KNU100 OU TO TO TO OU TO TO TO TO OU OU TO TO TO OU OU <	MSA CC 41 63 58	Gradional Commo	66 ing M on coc 49 50 64 61 63 55 65 74 68	69 odel (ok me 59 55 70 65 67 58 66 65	67 (39 cu ethod 60 62 61 62	1ts x) 51	60 `4 4 6 6 6 59 67 75 72 72 78 65 71 67
Knuckieoutside flatoutside flateye roundtopsidetopsidetopsidechuckchuckchuckchuckchuckthin-flankthin-flankthin-flankthin-flank	KNU100 OU TO TO TO TO OU TO TO TO OU TO TO TO OU OU TO TO OU OU <	MSA CC 41 63 58	Gradional Commo	66 ing M on coc 49 50 64 61 63 55 65 74 68 53	69 odel (ok me 59 55 70 65 67 58 66 65	67 (39 cu ethod 60 62 61 62	1ts x) 51	60 `4 4 6 6 6 59 67 75 72 78 65 71 67 67
outside flat outside flat eye round topside topside topside chuck chuck chuck chuck thin-flank thin-flank thin-flank	KNU100 OU TO TO TO TOP073 CHK068 CHK074 CHK078 CHK081 CHK051 TFL051 TFL064 RIB041 BRI056	MSA CC 41 63 58	Gradi 59 60	66 ing M on coc 49 50 64 61 63 55 65 65 74 68 53 45	69 odel (ok me 59 55 70 65 67 58 66 65 67 58	67 (39 cu ethod 60 62 61 62 55	1ts x) 51	60 `4 4 6 6 6 59 67 75 72 78 65 71 67 67 62
Knuckleoutside flatoutside flateye roundtopsidetopsidetopsidechuckchuckchuckchuckchuckthin-flankthin-flankthin-flankthin-flankthin-flankthinsket	NU100 OU TO TO TO TO TO CO CHK073 CHK074 CHK074 CHK081 TFL051 TFL054 RIB041 BRI056 BRI057	MSA CC 41 63 58	Gradion (1997)	66 ing M 0 COC 49 50 64 61 63 55 65 74 68 53 45 43	69 odel (ok ma 59 55 70 65 67 58 66 65 59 59 50	57 (39 cu ethod 60 62 61 62 61 62 55 50	1ts x) 51	60 `4 4 6 6 6 59 67 75 72 78 65 71 67 65 71 67 62 66 66
knuckie outside flat outside flat eye round topside topside chuck chuck chuck chuck chuck thin-flank thin-flank thin-flank thin-flank thin-flank	NU100 OU TO TO TO TO TO TO TO CON CHK068 CHK074 CHK082 TFL051 TFL052 TFL064 RIB041 BRI056 BRI057 FQshin	MSA CC 41 63 58	Gradio 000000000000000000000000000000000000	66 ing M 00 COC 49 50 64 61 63 55 65 74 68 53 45 43	69 odel (ok me 59 55 70 65 67 58 66 65 67 58 66 65 59 50	55 50	1ts x) 51	60 `4 4 6 6 59 67 75 72 78 65 71 67 65 71 67 62 66 66 66 66
Knuckleoutside flatoutside flatoutside flateye roundtopsidetopsidetopsidechuckchuckchuckchuckchuckthin-flankthin-flankthin-flankthin-flankthin-flankshinshin	RN0100 OU TO TO TO TOP073 CHK068 CHK074 CHK078 CHK081 CHK082 TFL051 TFL052 TFL064 RIB041 BRI056 BRI057 FQshin HQshin	MSA CC 41 63 58	Gradion (1997)	66 ing M 0 COC 49 50 64 61 63 55 65 74 68 53 45 43 45 43	69 odel (ok me 59 55 70 65 67 58 66 65 59 50	67 (39 cu ethod 60 62 61 62 61 62 55 50	1ts x) 51	60 `4 4 6 6 59 67 75 72 78 67 65 71 67 67 62 66 66 66 66 69

Cut proportion of all 39 muscles

Sum for all 39 cut x cooks (MSA Index)

WHAT DOES THE MSA INDEX LOOK LIKE

MSA Index = A weighted MSA score for the carcase

= 57.62

IMPACT OF CARCASS INPUTS ON MSA INDEX?

Carcase Input or Measure	Size of effect on the MSA Index (units)	Rela
HGP Status	-5	
Milk-fed Vealer	4	
Saleyard	-5	
Rib Fat	0.1	
Carcase Weight	0.01	
Gender	0.3	

These factors are governed by production decisions, nature and market specifications

tive Importance of these traits

Very High Very High Very High Medium Low

Low

IMPACT OF CARCASS INPUTS ON MSA INDEX?

Carcase Input or Measure	Size of effect on the MSA Index (units)	Rela
MSA Marbling	0.15	
Hump Height	-0.7	
Tropical Breed Content	Between 0 and -6.3	
Ossification	0.6	
Rib Fat	0.1	
Carcase Weight	0.01	

These factors are impacted by genetics and can be improved through genetic selection All can be manipulated to improve MSA Index

tive Importance of these traits

High High Very High High Medium Low

IMF EBV IMPACT ON MSA INDEX

1% increase in IMF EBV of sire = 27 ± 5 MSA marble point increase in progeny = ~0.41 point increase in MSA index

EFFECT OF GROWTH ON OSSIFICATION

Effect of sire EBV on steer growth

-50 percentile -95 percentile

EFFECT OF GROWTH ON OSSIFICATION

- Extra 8kg growth EBV ≈ growing 2% faster
- Saving of 11 days to get to same weight
- **Ossification increases by approximately 10 units in 2** months = 0.17 per day
- 11 days saves 1.9 units of Ossification
- **Reduces MSA Index by ~0.1 averaged over a mob**

ESTIMATED BOS INDICUS % IMPACT

Description	Input	Input	Input	Input	Input	Input
Estimated % Bos	0	12	18	25	38	50
Indicus		12		20	50	50
Animal Sex Type	М	М	M	М	М	М
Hormone Growth Promotent	Ν	Ν	N	Ν	N	Ν
MilkFedVealer	Ν	Ν	N	Ν	N	Ν
SaleYard	Ν	Ν	N	Ν	N	Ν
Rinse/Flush	Ν	Ν	N	Ν	N	Ν
Hot Std Carcase Weight	280	280	280	280	280	280
HangMethod	AT	AT	AT	AT	AT	AT
Hump Height	50	50	50	50	50	50
Ossification USDA	160	160	160	160	160	160
Marbling USDA	320	320	320	320	320	320
RibFat	12	12	12	12	12	12
Ulitimate pH	5.55	5.55	5.55	5.55	5.55	5.55
Loin Temp at Grade	4	4	4	4	4	4
Days of Ageing from Kill	5	5	5	5	5	5

57.7 **MSA Index 59.4** 59 **58.6** 57 **60.1**

BEEF

-

ESTIMATED BOS INDICUS % IMPACT

As hump height decreases, eating quality increases

WHEN WOULD PRODUCERS INCREASE **THEIR MSA INDEX?**

- When you get paid to increase quality
- If you care about consumers
- To improve the lot feeder rank of your cattle

MSA INDEX TRENDS OVER TIME

- Average MSA index for 2014-15 was 57.61
- Increase of 0.84 points from 2013-14 this is a significant increase in eating quality

MSA Index over time

MSA INDEX PERFORMANCE IS LIFTING

Percentile	2010/11	2011/12	2012/13	2013/14	2014/15
99%	65.17	65.26	65.59	65.69	65.74
95%	63.17	63.14	63.22	63.17	63.44
90%	62.12	62.04	62.07	62.01	62.37
75%	60.33	60.14	60.23	60.07	60.58
50%	56.98	57.00	57.21	57.00	57.94
25%	54.19	54.27	54.33	54.10	55.04
10%	50.35	51.34	51.36	51.01	52.52
5%	47.84	48.77	48.76	48.55	50.39
1%	44.87	45.37	45.52	45.44	46.60

2014/15 Financial Year Index Distribution

2014/15 HGP Index Distribution

■ HGP No ■ HGP Yes

8

2014/15 Feedtype Index Distribution

Grass Grain

2014/15 Gender Index Distribution

Male Female

FUTURE WORK

- Historic evaluation of carcass eating quality over time
- Evaluate the impact of the MSA grading system and carcass feedback to generate change in quality
- Generate an MSA Index estimated breeding value for Bos Taurus cattle
 - IMF
 - Growth
 - Rib fat
 - Carcass weight
- Incorporation of the tenderness gene markers for *Bos indicus*?

CONCLUSION

- MSA index has been very well received by industry
- Provides industry a tool to evaluate potential carcass eating quality Over time
- Every carcass which meets MSA requirements gets an MSA index score
- Actual range of MSA Index is between 30 and 80
- Genetics has a permanent & cumulative impact on quality
- The MSA Index and a simulation calculator are available online or on mobile via myMSA.com.au

Thankyou for listening!

FORMATION OF THE MSA INDEX

Need to know which:

- 1. Cuts to use
- Cook method for each cut 2.
- Muscle weight proportions 3.

ACTUAL WEIGHTS OR FIXED %'S

Getting actual cuts weights is impossible and predicting them is inaccurate....

So lets use fixed proportions

65 66

1 MUSCLE OR 39 MUSCLES

MSA Quality Index is for the whole carcass....

So it makes sense to use the 39 muscles in the MSA model

67

Cook method doesn't matter....

So lets use the most common cook method

BONE-OUT OF THE HIGH AND LOW MUSCLING STEER CARCASSES

- steers from high (n=14) /low (n=13) muscling lines, plus myostatin (n=13) steers slaughtered off pasture at domestic weights
- **Carcasses boned into untrimmed primals**, transported to UNE, CT scanned and then primals broken into 40 MSA cuts

Financial Year Index Distribution Breakdown

-2010/11 -2011/12 -2012/13 -2013/14 -2014/15

70	75	

FORMATION OF THE MSA INDEX

- Use all 39 muscles
- Use the most common cook method
- Use fixed cut proportions to calculate the MSA index
- Hang method, pH₁₁ and ageing time not to impacted by producer – fixed as AT, 5.5 and 5 days ageing
- The MSA quality index can be used by industry to monitor changes in whole carcass quality

