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Why do we want to do this? 

Genomic selection 
• Accurate, unbiased genetic evaluations. 

• Faster genetic improvement. 
 

ssGBLUP 
• A more unified approach – tie the adjustments together 

• More complete conceptual picture  
Genetic explanation of the phenotypes that we’re observing and the 
analysis being applied. 



Where we started 
Pedigree relationships 



What’s new 
Molecular markers tells us more  

about the relationship of the animals 



Genomic relationships 

.4 .6 

A relationship matrix including full pedigree  
and genomic information 

Legarra et al., 2009 



Genomic relationships for direct ancestors, descendants and 
 all other relatives of genotyped animals 

1 0 0.15 0.15 0 0 0 0 0.5 0.3 0 0 0.4 0 0.075 0.238 0.2

0 1 0.15 0.15 0 0 0 0 0.5 0.3 0 0 0.4 0 0.075 0.238 0.2

0.15 0.15 1 0 0 0 0 0 0.3 0.5 0 0 0.4 0 0 0.2 0.2

0.15 0.15 0 1 0 0 0 0 0.3 0.5 0 0 0.4 0 0.5 0.45 0.2

0 0 0 0 1 0 0.1 0.1 0 0 0.5 0.2 0 0.35 0.25 0.125 0.175

0 0 0 0 0 1 0.1 0.1 0 0 0.5 0.2 0 0.35 0.25 0.125 0.175

0 0 0 0 0.1 0.1 1 0 0 0 0.2 0.5 0 0.35 0.1 0.05 0.175

0 0 0 0 0.1 0.1 0 1 0 0 0.2 0.5 0 0.35 0.1 0.05 0.175

0.5 0.5 0.3 0.3 0 0 0 0 1 0.6 0 0 0.8 0 0.15 0.475 0.4

0.3 0.3 0.5 0.5 0 0 0 0 0.6 1 0 0 0.8 0 0.25 0.525 0.4

0 0 0 0 0.5 0.5 0.2 0.2 0 0 1 0.4 0 0.7 0.5 0.25 0.35

0 0 0 0 0.2 0.2 0.5 0.5 0 0 0.4 1 0 0.7 0.2 0.1 0.35

0.4 0.4 0.4 0.4 0 0 0 0 0.8 0.8 0 0 1.3 0 0.2 0.75 0.65

0 0 0 0 0.35 0.35 0.35 0.35 0 0 0.7 0.7 0 1.2 0.35 0.175 0.6

0.075 0.075 0 0.5 0.25 0.25 0.1 0.1 0.15 0.25 0.5 0.2 0.2 0.35 1 0.6 0.275

0.238 0.238 0.2 0.45 0.125 0.125 0.05 0.05 0.475 0.525 0.25 0.1 0.75 0.175 0.6 1.175 0.463

0.2 0.2 0.2 0.2 0.175 0.175 0.175 0.175 0.4 0.4 0.35 0.35 0.65 0.6 0.275 0.463 1.125
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Corrects pedigree relationships 
in view of  

genomic relationship 

Extends genomic  
information to  

non-genotyped animals 



Single step GBLUP 
BLUP with H-1 replacing A-1 
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Aguilar et al., 2010; Christensen and Lund, 2010 



Overcoming the challenges 

• Put A and G on the same scale. 

• Account for polygenic variation – done differently in different studies. 

• Fine tuning of parameters. 

• The size of the problem – how do you invert the “growing” G matrix.  

• Empirical evidence that it works. 

• Delivery of genomic information. Weekly results, sharing and 
incorporating international information. 

 

 

 



Putting A and G on the same scale.  

•  Deviation from base allele frequency 

Deviation from 0.5 

 

•   Adjust G to match A 

 Adjust A to match G 

 

• Use ALL genotyped animals 

Use bulls born since 1990 

 

• Base animals actually share genes 
identical by descent, which shift 
relationships and inbreeding values up 
or down.  

• Genomic and pedigree-based matrices 
should be compatible in scale.  

    Forni et al 2011; Vitezica et al., 2011; 

    Christensen et al 2012 

 



Genomic and pedigree relationships  
All Holsteins born since 1990 

Parameters from U.S. Holsteins 
 

  Pedigree inbreeding = 5.91 

  Genomic inbreeding = 5.91 

 

sd (G-A) = 0.03 

Correlation (G,A) = 0.7 

Three accuracy measures of 𝑮 and 𝑨 are: 

 

Average inbreeding 

 
Differences of off-diagonals:  
 

    standard deviation 𝑮−𝑨  

   correlation between G and A 

Genomic relationships are similar to pedigree relationships but more accurate. 

Diagonals and off-diagonals of 𝑮 and 𝑨 should be of the same size and scale  



Are we done with correctly combining G and A? 
 No, but no major obstacles exist. 

• Should we continue to use the 1990 base? 
• Allele frequencies continue to change over time.   Legarra e t al, 2014 
• What about a shorter time span or use a more homogeneous base?   Lourenco et al, 2014 

 

• What about external populations or missing pedigrees (foreign genetics)? 
• Unknown Parent Groups – changes inbreeding, drift and across-group relationships. 
          Misztal et al, 2013; Tsuruta et al, 2014 

 

• What about multiple breeds and crossbreds? 
• Ancestral relationships using Metafounders.   Legarra et al, 2015 

• Correct for the underestimation of inbreeding in A, with respect to G. 
• Leads to a “coherent theoretical framework” of the base population. 



Choice of parameters 
Putting ssGBLUP into practice 

Theory, intuition and empirical results. 

1 1

1 1
22

. 

 

 
   

  

0 0
H A

0 G A

22
2 22| ,    ~    N(0, )     N(0, ) 

1- 

G A
u A G



Prediction in 2004 DD2009 

R2 b-value 

Parent Avg 24 0.76 

Multistep 

(VanRaden) 
40 0.86 

 

Single-step   

41 0.76 

                42 0.87 

41 0.96 

 Single Trait Analysis 
Final score - Aguilar et al., 2010 

 

1 1

22G -A              

1 1

221.5G -0.9A             

1 1

221.5G -0.6A            

Multiple-Trait Genomic Prediction 
Linear type traits - Tsuruta et al, 2011 

 𝑯−1 = 𝑨−1 +
𝟎 𝟎
𝟎 𝑮−𝟏 − 𝜔𝑨𝟐𝟐

−𝟏  

R2 Weight for A22
-1 

W = 1 W = 0.7 

Traditional MT 

Parent Average 

20.5 .77 .77 

Genomic 

Single Trait 

34.6 .79 .91 

Genomic  

Multiple Trait 

37.3 .80 .93 

scaling A22
-1 more important than scaling G for controlling bias 

𝑯−1 = 𝑨−1 +
𝟎 𝟎
𝟎 τ𝑮−𝟏 − 𝜔𝑨𝟐𝟐

−𝟏  



Genetic Trend of bulls with Different Omega () 
smaller  = lower genetic trend 

changes heritability 

Masuda et al, 2015 



Single-step genomic evaluation using multitrait random regression model 
and test-day data.  Koivula et al, 2015 

Bull validation results - showing regression coefficients (b1) 

ssGBLUP
1
 Milk Protein Fat 

 w20 80% on G 0.87 0.73 0.72 Weight on G had a small effect. 
Lower weight on G results in 

Less over-prediction 
 w15 85% on G 0.86 0.72 0.72  

 w10 90% on G 0.84 0.71  0.71  

  

τ = 1.0 

ω = 0.5 

w10 = .90G 

weight 
on 

 A22
−1 

 
1.09 

 
0.92 

 
0.87 

Weight on A22
−1 had a larger effect. 

Lower heritability results in 
Much less over-prediction 

w = proportion of polygenic variance; τ = weight for G−1; ω = weight for A22
−1 matrix. 

Gw = (1 − w)G + w A22 

1.0 Gw
-1 + 0.5 A22

-1 

http://www.journalofdairyscience.org/article/S0022-0302(15)00079-X/fulltext#tblfn0020


Adjusting for Polygenic Variance 

Currently done in multiple places,  

Gw = G + A22        and in       H-1  with Gw
-1 + A22

-1 

• What do we see. 
• Changes the heritability, differs by trait, differs by de-regression procedure, 

influenced by amount of foreign data, length of data , etc.. 
 

 What are these adjustments doing? 

•    Lowers heritability ---> genomic heritability 

•    Animals with longer pedigrees receive less weight ---> linkage decay 



Modeling in the genomic era 

• Scale G and A22 appropriately for ancestral relationships by (α). 

• Fine tune Gw =(.𝒙𝒙G + 1−. 𝒙𝒙 A22), i.e., keep it positive definite. 

• Account for reduced heritability in combined relationship matrix A22
−1  

 genomic heritability is lower because of LD.                   (τ and ω) 

 

 

 

 
Laurenco et al, 2014 



Recent changes by USDA-CDCB to make  
the multi-step procedure more accurate. 

Polygenic effect was added (2010), the variance of the cow 
PTAs were reduced (2010), weight on Direct Genomic Value 
was reduced (2012, 2013), correlations in multi-trait 
Productive Life were reduced (2012) 

 

Heritability of yield traits reduced (2014) 

Source: VanRaden, 2015 



Size of the problem 
Genomic testing continues to grow 
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Run Date 

Imputed, Young Imputed, Old

<50k, Young, Female <50k, Young, Male

<50k, Old, Female <50k, Old, Male

50k, Young, Female 50k, Young, Male

50k, Old, Female 50k, Old, Male



Large G matrix 
inversion by genomic recursion 

• Henderson, 1976: A-1 by recursion, animals ordered: oldest to youngest 

• Misztal et al, 2014 - G-1 by APY.  

     Algorithm based on decomposition for Proven and Young animals.  
• Recursion of Young animals on Proven (phenotypes or progeny) animals. 

• Order of animals – not critical. 
 

 

• Recursion on any core group of about 10,000 animals. 

   Limited number of independent chromosome segments. (Stam,1980) 

• G-1 is approximate as covariances among young animals is ignored. 

G-1 

Core  animals G-1
APY 

ALL animals 



Use of genomic recursions in single-step genomic best linear 
unbiased predictor (BLUP) with a large number of genotypes. 

Fragomeni et al, 2015 

Genomic EBV (GEBV) were calculated with a regular inverse of G, 
and with the G inverse approximated by APY.  

Description 
Number of 
records/animals 

Phenotype 
Final score for US Holstein cows 
classified in 2014 or earlier 

11,102,702 

Cows classified 6,943,618 

Genotyped Sires 23,000 (16,500 with > 5 progeny) 23,000 

Genotyped Cows Cows with records 27,000 

Young Animals Random Samples of genotyped animals 50,000 



Genomic EBV (GEBV) were calculated with a regular 
inverse of G, and with the G inverse approximated by APY.  

Fragomeni et al, 2015 

Core animals Correlation 

100,000 ALL – Direct G-1 1.00 

50,389  Sires and Cows 0.995 

23,174  Sires  0.994 

27,215  Cows 0.992 

Random 15,000 Proven .989 - .990 

Random 20,000 Proven .992 - .993 

Random 20,000 Young .989 - .990 

 
Replicated 
  4 times 

 



Single-step genomic evaluations with  
570K genotyped animals in US Holsteins 

Y. Masuda et al., 2015 

Core animals b1 R2 comment 

9,406 bulls with at least 1 daughter .96 𝜔 = .7 

9,406 bulls with at least 1 daughter .82 𝜔 = .9 not optimized 

9,406 bulls and 7,422 classified cows .83 .45 𝜔 not optimized 

5,000  random animals .83 .39 𝜔 not optimized, 3 reps. 

10,000 random animals .83 .44 𝜔 not optimized, 3 reps. 

15,000 random animals .83 .44 𝜔 not optimized, 3 reps. 

20,000 random animals .82 .44 𝜔 not optimized, 3 reps. 

30,000 random animals .82 .44 𝜔 not optimized, 3 reps. 

2009 data predicting 2014 data --- 2,948 bulls with 30 daughters in 2014 



Findings from APY study 

• Genomic prediction with all genotypes and all available data  

   is now possible. 

• Genomic predictions for bulls were similar regardless  

   of the definition of core animals. 

• A larger number of core animals slowed down the rate of convergence. 

• The parameter ω affected genomic evaluations : 
• Smaller omega, more accurate predictions. 
• Smaller omega, faster convergence. 



Single-step GBLUP – other findings 

• VanRaden (2012) applied the algorithm of Legarra-Ducrocq (2012) to USA Jersey 
yield traits and obtained good results. 

• However, he was unable to obtain convergence when he applied the same 
procedure to the Holstein yield traits. 

• For comparison purposes, Yutaka Masuda (2015) applied APY algorithm (G-1 
APY) 

to USA Jersey yield traits.  

• New results are very similar to the results from the Legarra-Ducrocq (2012) 
algorithm. 

• All indications are that the APY algorithm (G-1 
APY) will work for the U.S. Holstein 

yield data. USDA-CDCB expect good CPU time, but will need more memory 



Single-step GBLUP – works 

• Major challenges have been addressed. 

• Final testing is underway. 

• Data flow and coordination with others is being addressed. 

• Now, suitable for a National Genetic Evaluation. 



   

Genetic 

Any questions ? 


