Accuracy of genomic prediction using whole-genome sequence data in white egg layer chickens

Marzieh Heidaritabar, Mario Calus, Hendrik-Jan Megens, Addie Vereijken,

Martien Groenen, John Bastiaansen

Acknowledgements

www.breed4food.com

Introduction

Why sequence data?

- Causative mutation are assumed to be in data
- Expectation: Higher accuracy of genomic prediction
- Understand biology

Why sequence data?

Causative mutation are assumed to be in data

- Expectation: Higher accuracy of genomic prediction
- Understand biology

Why imputation?

- Sequencing is still expensive!
- To get a large population of sequenced animals:
 - Sequence key ancestors
 - Imputation of genotyped animals

Objectives

Can accuracy of genomic prediction be improved by:

- Sequencing key ancestors of population and imputation of genotyped animals?
- **Pre-selecting SNPs** that are more likely to affect the phenotype?

Material and methods

Data

Data

Quality control

MAF distribution

MAF Distribution after MAF filtration (< 0.025)

MAF Distribution after MAF filtration (< 0.025)

Imputation to whole-genome sequence

Beagle V4

Genomic prediction

Prediction models

BLUP (pedigree-based model)

GBLUP

Assumption: equal variances for all SNPs

BayesC

- Gibbs sampling
- 60,000 iterations (10,000 burn-in)
- Assumption:
 - 95% of SNPs with zero effect
 - 5% of SNPs with large effect

For quality of life

Annotation	Ν
Synonymous	41,010
Non-synonymous	15,516
Non-coding	4,539,701
Total	4,596,227

Annotation	Ν	
Synonymous	41,010	Coding SNPs
Non-synonymous	15,516	
Non-coding	4,539,701	
Total	4,596,227	

- Synonymous SNPs: do not alter amino acid sequence of a protein
- Non-synonymous SNPs: alter amino acid sequence of a protein

Results

AGENIN

Conclusions

Whole-genome sequence hardly improved genomic prediction accuracy compared with 60K

GBLUP and **BayesC** produced **similar** prediction **accuracies**

Selection of non-synonymous SNPs did not improve accuracy of genomic prediction

Thank you

Email: marzieh.heidaritabar@wur.nl

Which animals to sequence? **Proportion of diversity** (Druet et al. 2014)

G matrix for **2,140** genotyped animals

$$P_n = G_n^{-1} c_n$$

• G_n : a subset of G matrix (62 ancestors)

• C_n : average genomic relationship of 62 animals with whole population

•
$$P_n$$
 : proportion of genetic diversity

Which animals to sequence? **Proportion of diversity** (Druet et al. 2014)

For quality of life