### Genetic evaluation for three way crossbreeding

#### Ole F. Christensen

olef.christensen@mbg.au.dk

Aarhus University, Center for Quantitative Genetics and Genomics

EAAP 2015, Warszawa

# Motivation (pigs)

- Crossbreeding is predominant in the production. Commonly:
  - Crossbred sows from two dam lines
  - Crossbred production pigs from sire line and crossbred sows.
- Genomic selection implemented for purebreds, but also gives options for crossbreds
- ► Ideally:
  - Include records on crossbreds
  - Compute breeding values for crossbred performance.

#### Aim here: develop methods

- Three-breed terminal crossbreeding
- Additive relationships from pedigree and marker genotypes

#### Scenario

- ▶ Three breeds, A, B and C
- lacktriangle Breeds  ${\mathcal A}$  and  ${\mathcal B}$  are mated to produce  ${\mathcal A}{\mathcal B}$  sows
- ▶ Breed  $\mathcal C$  boars are mated to  $\mathcal A\mathcal B$  sows to produce  $\mathcal C(\mathcal A\mathcal B)$  crossbreds
- ▶ Phenotypes on purebreds A, B and C and crossbreds C(AB).
- Pedigree information exist and some animals are genotyped.

# Previous work (two way crossbreeding)

(Wei and van der Werf, 1994, Christensen et al., 2014)

$$\begin{split} & \textbf{y}_{\mathcal{A}} = \textbf{X}_{\mathcal{A}}\boldsymbol{\beta}_{\mathcal{A}} + \textbf{Z}_{\mathcal{A}}\textbf{a}_{\mathcal{A}} + \textbf{e}_{\mathcal{A}}, \\ & \textbf{y}_{\mathcal{B}} = \textbf{X}_{\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}} + \textbf{Z}_{\mathcal{B}}\textbf{a}_{\mathcal{B}} + \textbf{e}_{\mathcal{B}}, \\ & \textbf{y}_{\mathcal{A}\mathcal{B}} = \textbf{X}_{\mathcal{A}\mathcal{B}}\boldsymbol{\beta}_{\mathcal{A}\mathcal{B}} + \textbf{g}_{\mathcal{A}\mathcal{B}} + \textbf{e}_{\mathcal{A}\mathcal{B}}, \end{split}$$

#### where

- ▶ BVs for purebred performance:  $\mathbf{a}_{\mathcal{A}}$ ,  $\mathbf{a}_{\mathcal{B}}$ .
- Relationships defined according to breed of origin.
- ▶ BVs for crossbred performance:  $\mathbf{g}_{\mathcal{A}}$ ,  $\mathbf{g}_{\mathcal{B}}$ .
- Genetic correlation between purebred and crossbred performances.

## Model for three way crossbreeding

Model

$$\begin{split} &\textbf{y}_{\mathcal{A}} = \textbf{X}_{\mathcal{A}}\boldsymbol{\beta}_{\mathcal{A}} + \textbf{Z}_{\mathcal{A}}\textbf{a}_{\mathcal{A}} + \textbf{e}_{\mathcal{A}}, \\ &\textbf{y}_{\mathcal{B}} = \textbf{X}_{\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}} + \textbf{Z}_{\mathcal{B}}\textbf{a}_{\mathcal{B}} + \textbf{e}_{\mathcal{B}}, \\ &\textbf{y}_{\mathcal{C}} = \textbf{X}_{\mathcal{C}}\boldsymbol{\beta}_{\mathcal{C}} + \textbf{Z}_{\mathcal{C}}\textbf{a}_{\mathcal{C}} + \textbf{e}_{\mathcal{C}}, \\ &\textbf{y}_{\mathcal{C}(\mathcal{A}\mathcal{B})} = \textbf{X}_{\mathcal{C}(\mathcal{A}\mathcal{B})}\boldsymbol{\beta}_{\mathcal{C}(\mathcal{A}\mathcal{B})} + \textbf{g}_{\mathcal{C}(\mathcal{A}\mathcal{B})} + \textbf{e}_{\mathcal{C}(\mathcal{A}\mathcal{B})}, \end{split}$$

#### where

- ▶ BVs for purebred performance:  $\mathbf{a}_{\mathcal{A}}$ ,  $\mathbf{a}_{\mathcal{B}}$ ,  $\mathbf{a}_{\mathcal{C}}$ .
- ▶ BVs for crossbred performance:  $\mathbf{g}_{\mathcal{A}}$ ,  $\mathbf{g}_{\mathcal{B}}$ ,  $\mathbf{g}_{\mathcal{C}}$ .
- Relationships need to be defined!

## Model for three way crossbreeding

- ▶ BVs for crossbred performance  $\mathbf{g}_{\mathcal{A}}$  are correlated with with genetic effects  $\mathbf{g}_{\mathcal{C}(\mathcal{AB})}$  (relationships) and BVs for purebred performance  $\mathbf{a}_{\mathcal{A}}$  (genetic correlation).
- Supports a breeding goal with both purebred and crossbred performances.
- ▶ Allows different genetic variances in three breeds.
- ▶ Genetic correlation < 1: dominance effects and different genetic background, G  $\times$  E
- ► Relationships defined such that the model can be fitted using standard animals breeding software.

### Additive genetic relationships

Relationships can be defined either "within" or "across" breeds.

- ► Within breed:
  - ▶ Partial relationship matrices (Garcia-Cortes and Toro, 2006): 3 breed specific matrices, 1 breed segregation matrix.
  - Having marker genotypes on crossbreds: split according to breed of origin, construct marker-based partial relationship matrices.

#### Across breeds:

- ▶ Pedigree relationships on founders within breeds and across breeds (Legarra et al. 2015).
- Estimate founder relationships from marker genotypes.
- presented here!

# Genetic relationships across breeds

► Relationships between base individuals:

$$\mathbf{\Gamma} = \left[ \begin{array}{ccc} \gamma_{\mathcal{A}} & \gamma_{\mathcal{A},\mathcal{B}} & \gamma_{\mathcal{A},\mathcal{C}} \\ \gamma_{\mathcal{A},\mathcal{B}} & \gamma_{\mathcal{B}} & \gamma_{\mathcal{B},\mathcal{C}} \\ \gamma_{\mathcal{A},\mathcal{C}} & \gamma_{\mathcal{B},\mathcal{C}} & \gamma_{\mathcal{C}} \end{array} \right].$$

- Pedigree relationships defined recursively: A(Γ)
- Genomic relationships:  $G = mm^T$ . Estimate  $\Gamma$  by matching G and  $A(\Gamma)_{22}$ .
- ▶ Combined relationships:  $\mathbf{H}(\mathbf{\Gamma})$  where

$$(\textbf{H}(\Gamma))^{-1} = \left[ \begin{array}{cc} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{G}^{-1} - (\textbf{A}(\Gamma)_{22})^{-1} \end{array} \right] + (\textbf{A}(\Gamma))^{-1},$$

▶ Usual procedure for computing  $(\mathbf{A}(\mathbf{\Gamma}))^{-1}$  and  $\mathbf{A}_{22}(\mathbf{\Gamma})$ .

# Variance-covariance of genetic effects



 $\mathbf{a}_{\mathcal{C}}$ 

 $\mathbf{g}_{\mathcal{A}}$ 

 $\mathbf{g}_{\mathcal{A}\mathcal{B}}$ 

### Variance-covariance of genetic effects

lacktriangle Variance-covariance of genetic effects equals  $oldsymbol{\Sigma} igotimes oldsymbol{\mathsf{H}}(oldsymbol{\Gamma})$  where

$$\boldsymbol{\Sigma} = \left[ \begin{array}{cccc} \sigma_{a,\mathcal{A}}^2 & \sigma_{a,\mathcal{A},\mathcal{B}} & \sigma_{a,\mathcal{A},\mathcal{C}} & \sigma_{ag,\mathcal{A}} \\ \sigma_{a,\mathcal{A},\mathcal{B}} & \sigma_{a,\mathcal{B}}^2 & \sigma_{a,\mathcal{B},\mathcal{C}} & \sigma_{ag,\mathcal{B}} \\ \sigma_{a,\mathcal{A},\mathcal{C}} & \sigma_{a,\mathcal{B},\mathcal{C}} & \sigma_{ag,\mathcal{C}}^2 & \sigma_{ag,\mathcal{C}} \\ \sigma_{ag,\mathcal{A}} & \sigma_{ag,\mathcal{B}} & \sigma_{ag,\mathcal{C}} & \sigma_{g}^2 \end{array} \right].$$

- 10 genetic parameters.
- ▶ BLUP, REML available using standard animal breeding software (input: inverse relationship matrix).

#### Conclusions

- ► Methods for genetic evaluation for three-way crossbreeding are available.
- Relationships either "within" or "across" breed
- Implemented in standard animal breeding software

First step!!

### Acknowledgements

- ► Co-authors: Andres Legarra, Mogens Lund, Guosheng Su
- Project: "Developing genomic selection for a pig breeding system based on crossbreeding"
- Funding: through "Green Development and Demonstration Programme" (GUDP) by Danish Ministry of Food, Agriculture and Fisheries, Pig Research Centre and Aarhus University.

#### Future work

- ▶ Analyse data from Danish Duroc $\times$  (Landrace $\times$  Large White).
- Can the 10 genetic genetic parameters be estimated accurately?