

INNOVATION IN LIVESTOCK PRODUCTION: FROM IDEAS TO PRACTICE

31 AUGUST - 4 SEPTEMBER 2015 WARSAW, POLAND

Genomics, sexed semen: changes in reproduction choices in French dairy herds

Pascale Le Mézec (1), Marion Benoit (2), Sophie Moureaux (1,4), Clotilde Patry (2,3)

Institut de l'Elevage, 149, rue de Bercy, 75592 PARIS cedex 12

 Allice, 149, rue de Bercy, 75592 PARIS cedex 12
 EuroGenomics, 149, rue de Bercy, 75592 PARIS cedex 12

INRA GABI, Domaine de Vilvert, 78352 JOUY-EN-JOSAS cedex

New innovative tools for genetics and reproduction strategies

2009

Genomics: GEBV available for young \mathcal{J} GEBV available for \mathcal{Q} in 2011

High reliability for all traits

Possibility to increase genetic progress, especially for functional traits Sexed semen:

Success: 90% \bigcirc calves after seved \bigcirc Al

 $X | sexed \bigcirc AI$

Possibility to select females on farm

For farmers : changes in herd management and reproduction strategies

2015

In breeding programs: changes in genetic orientations, because of the genetic progress allowed for functional traits; changes in the selection designs for males and for females

The French dairy population for breeding and insemination

• Available bulls per year – Breeding programs

	2009		2014	
	Progeny testing	Proven bulls	Genomic EBV without progeny	
Holstein	600	50	180	
Montbéliarde	180	20	130	
Normande	150	15	80	

• Inseminations (AI) – Main dairy breeds

2014	Number Al	Number of bulls >1000 Al	Number of inseminated cows and heifers
Holstein	4,050,774	527	2,450,032
Montbéliarde	828,105	201	634,263
Normande	523,453	135	340,550

A reversal in the use of Al bulls

2014: 70% AI with genomic evaluated young bulls

definition	use				
Classical evaluation					
Proven bulls (progeny tested)	Few bulls, thousands of Al				
Bulls under progeny testing	Lot of bulls, 300 1 st Al				
Genomic evaluation					
Young bulls with genomic EBV without daughters	Hundred of bulls, few Al				
Proven bulls with genomic EBV	Dozen of bulls, medium use of Al				

Two phases of bulls contributing to genetic progress

Genetic evolution of Holstein 1st AI - Functional traits and Net Merit

2009: 1st genomic evaluation = breeding values available for 4 years of waiting progeny testing dairy bulls. Large choice, higher precision for functional traits.

Since 2012: evaluated bulls come from genomic breeding programs. **Higher selection intensity, increased reliability**.

More genetic progress for functional traits

2004-2014 Genetic trends for Holstein 1st AI in France:

	2004-2009	1 st genomic	2009-2014	2004-2014
Functional traits	↗ +0.3 EBV STD	EBV	↗ 7 +0.8 EBV STD	+1.1
Production traits: Milk Protein Contents	↗ +0.7 EBV STD → -0.2 EBV STD		→ 0 EBV STD ↗ +0.5 EBV STD	+0.7 +0.3
Туре	↗ ↗ +1.0 EBV STD		↗ ↗ +1.3 EBV STD	+2.3
ISU = Total Merit index	フィン +1.3 EBV STD		フィン +1.5 EBV STD	+2.8

In 2012, the composition of the Total Merit Index (ISU) was updated with more weight for functional traits: **37.5% 7 50%** (Holstein)

Genotyping females

Breeding programs in dairy breeds:

• About 25,000 genotyping /year Stable =

2014: 100,000 genotyped females on farms (cumulated)

Commercial dairy farms:

- More than 100,000 females with genomic EBV
- Expected 75,000 new genotyped females in 2015
- 96% under 18 months old
- About 6,000 farms tried genotyping
 Increasing ++

New tools to put emphasis on females

- French breeders **ask and pay** genotyping for their **own use**
- Allowed by

The availability of the **LD chip** since 2012 The **low price**

• More tools for mating advices:

A early genetic information for females

And more services:

- Parentage testing
- Haplotype and mutation tests for genetic characteristics or defects (more than 20 tests / 4 breeds)

A complete genetic information for females (for all traits)
→ highlight of the diversity of females

• To **sort** among females with different genetic profiles

2010-2014: great increase of sexed semen

2014: 35% dairy heifers with $\stackrel{\frown}{}$ sexed semen Al

2014: 91% female calves after female sexed AI in 2013 (/115.000 dairy calves)

Montbéliarde cows can sustain sexed AI due to the higher female fertility of the breed

Sexed semen: not only for genetic purposes

Reasons to use sexed semen with 90% hope of getting a female calf:

- To delevop the herd without buying outside
- To sell females when **good market** opportunities
- To avoid heifers calving difficulties
- To **avoid** dairy **males** with a bad economic value
- To allow **beef crossbreeding** for a part of the herd
- To **sort** among a larger number of females

Combining sexed semen and genotyping: a new strategy in herds

Developing sexed semen → to **sort** among a larger number of females = more selection intensity

Genotyping \rightarrow to **sort** among females with different genetic profiles = more reliable informations

→ to target appropriate bulls and females according to selection objectives at the herd level

Perspectives in France

- Farmers and Breeders are confident: they massively adopt innovations in order to better match animals and their environment according to their objectives and in a sustainable way
- Genetic progress for functional traits is expected soon at the herd level

 Genomic selection will be extended to other cattle breeds (local and beef) and other species (dairy sheep and goats) in 2015-2016

Thank you for your attention

