Single step BLUP in field data

Susan Wijga A.M.F.M. Sprangers, R. Bergsma, E.F. Knol

Single Step

- Extend use of DNA info in breeding
 - More accurate reflection of genetic relations in population
 - Optimal use of genotyped animals
- More accurate breeding values

• Added value proven scientifically

Literature: mainly simulation

Field data: ...

Minimum requirements

- Starting point: BLUP using pedigree relations
 - Multitrait (25), multiline (9 million pigs)
 - Genetic groups
 - Restart with old solutions
- Develop into: BLUP using combination of pedigree and DNA relations
 - All of the above
 - Merge without downsizing
 - Flexible for further development

Analyze this

- Breeding value estimation MiXBLUP software
 - Traditional pedigree
 - Single step
- Relationship matrix single step calc_grm software
- Training data : validation data ~ 90% : 10%
- Example trait birth weight

Validation

	Training	Validation
Phenotyped	590,000	53,000
Genotyped	22,000	3,000

- Primiparous records
- General linear model on validation data
 - Phenotype corrected for fixed effects as in BVE
 - Additional fixed effect breeding value

Prince charming or just a frog?

•
$$\Delta G = \frac{\sigma_H * r_{IH} * i}{L}$$

•
$$rIH = \frac{r(corr_phenotype, EBV)}{\sqrt{heritability}}$$

• Regression: aim is 1 unit EBV is 1 unit phenotype

- Regression coefficients
 - Traditional 0.88 vs single step 0.99
- Correlation corrected phenotype estimated breeding value
 - Traditional 0.17 vs single step 0.24
- Accuracy
 - Increased by 42% with single step

Accuracies

Accuracies

Trait	Traditional %	Single step %	% improvement
1	19	26	38
2	21	25	17
3	13	22	70
4	22	27	21
Birth weight	26	37	42
6	23	31	34
7	14	21	51
8	27	34	25
9	22	28	24

Accuracies

Concluding remarks

- Also in field data demonstrable added value of single step
 - Size does matter; substantial number of animals required
 - Increased run time single step
 - Requires monitoring and resilient computer environment
 - Requires innovative solutions as number of genotyped animals grow

Thank you

Susan Wijga susan.wijga@topigsnorsvin.com