

Approaches to improve genomic predictions in Danish Jersey

G. Su¹, U. S. Nielsen², G. Wiggans⁴, G. P. Aamand³, B. Guldbrandtsen¹, M. S. Lund¹

¹Aarhus University, Denmark

²Seges, Denmark

³Nordic Cattle Genetic Evaluation, Denmark

⁴Agricultural Research Service, USDA, USA

Background

- Accuracy of genomic prediction depends on size of reference population (RP)
- >In dairy cattle, RP mainly consists of progeny-tested bulls
- Small breeds have small RP
- Increase RP by sharing RP data and including cows in the reference population

Objective:

Investigate the improvement of genomic predictions

by sharing RP data

by including cows in RP

in Danish Jersey -- a numerically small breed.

Data

- 1,369 Danish Jersey bulls (birth year 1988 2010)
- 1,160 US Jersey bulls (2000 2009)
- 9,419 Danish Jersey cows (2010 2013)

Genotype data

Most bulls genotyped with 54k chip

Most cows genotyped with 7k chip

Marker data of different chips imputed to 54k chip

After editing, about 40,000 markers

Phenotype data

Deregressed proof (DRP) in Nordic scale of 8 traits available for both Danish and US Bulls.

DRP of 6 traits available for both bulls and cows

Genomic prediction

Single-trait GBLUP model

 $\mathbf{y} = \mathbf{1}\boldsymbol{\mu} + \mathbf{Z}\mathbf{g} + \mathbf{e}$

μ: overall mean; **g**: additive genetic effect; **e**: random error

It is assumed that
$$\mathbf{g} \sim N(\mathbf{0}, \mathbf{G}_{\mathbf{A}}\sigma_{g}^{2})$$
,
 $\mathbf{G}_{\mathbf{A}} = 0.8\mathbf{G} + 0.2\mathbf{A}$

The model is equivalent to a GBLUP model including a residual polygenic effect accounting for 20% genetic variance

Validation scenarios

Test	Reference	
Validation on bull 338 DK bulls	DK bulls	
born 2005 onwards	DK+US bulls	
Validation on cow	DK bulls	
3287 cows from 87	DK+US bulls	
half-sib families	DK bulls + cows	
	DK+US bulls + cows	

Criteria of Validation

Reliability of GEBV for bulls in the test data measured as

Bias is measured by regression of DRP on GEBV

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Validation on bull

Trait	r ² _{GEBV}		Regression	
	DK	DKUS	DK	DKUS
Milk	37.2	44.1	0.88	0.83
Fat	21.2	22.2	0.71	0.68
Protein	29.5	32.9	0.72	0.69
Fertility	28.9	27.4	1.09	1.04
Mastitis	28.3	28.9	0.73	0.72
Body conform.	29.9	34.0	0.83	0.79
Udder conform.	20.0	30.2	0.72	0.81
Longevity	15.1	14.0	0.71	0.62
Average	26.2	29.2	0.80	0.77

Validation on cow - reliability

Trait	DK	DKUS	DKCOW	DKUSCOW
Milk	44.2	53.1	65.8	68.5
Fat	24.9	31.7	36.1	38.2
Protein	28.5	35.9	40.3	42.1
Mastitis	55.5	57.0	56.3	54.9
Body conform.	42.6	49.4	40.7	43.6
Udder conform.	40.6	49.1	46.3	51.8
Average	39.4	46.0	47.6	49.9

+US \rightarrow 6.6%, +cow \rightarrow 8.0%, +US and cow \rightarrow 10.5%

Validation on cow - regression

Trait	DK	DKUS	DKCOW	DKUSCOW
Milk	1.28	1.29	1.23	1.24
Fat	0.80	0.90	0.86	0.88
Protein	0.93	1.00	0.93	0.93
Mastitis	1.19	1.15	1.14	1.06
Body conform.	1.11	1.11	0.99	1.00
Udder conform.	1.25	1.28	1.10	1.13
Average	1.09	1.12	1.04	1.04

Compare validation on bulls and on cows

Trait	r² _{GEBV} - Bull		r ² _{GEBV} - Cow	
	DK	DKUS	DK	DKUS
Milk	37.2	44.1	44.2	53.1
Fat	21.2	22.2	24.9	31.7
Protein	29.5	32.9	28.5	35.9
Mastitis	28.3	28.9	55.5	57.0
Body conform.	29.9	34.0	42.6	49.4
Udder conform.	20.0	30.2	40.6	49.1
Average	27.7	32.1	39.4	46.0

 $r_{cow}^2 > r_{bull}^2$

Conclusions

- Sharing reference data and including cows in reference appulation are efficient
- Genomic selection is promising even for rumerically small population

