

Protein digestion in broiler: what are the specificities induced by the protein source in the diet?

E. Recoules¹, H. Sabboh-Jourdan¹, A. Narcy¹, M. Lessire¹, G. Harichaux², M. Duclos¹ and S. Réhault-Godbert¹

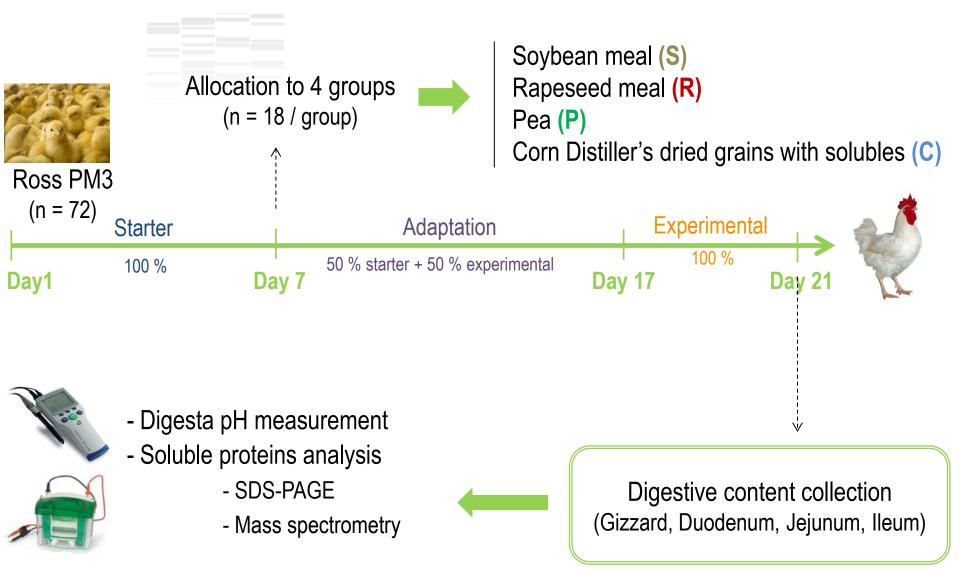
¹INRA, Poultry research unit, 37380, Nouzilly, France ²INRA, Mass spectrometry laboratory, 37380 Nouzilly, France.

CONTEXT

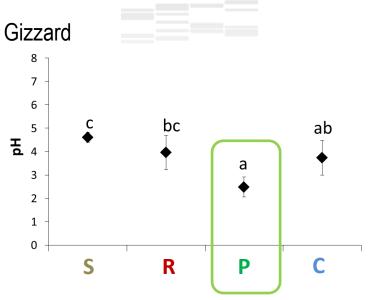
- Price volatility
- Climate hazards
- Competition for resources

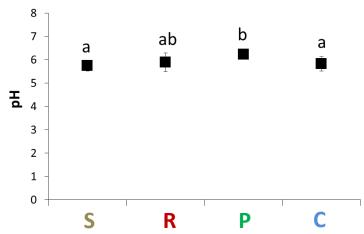
Diversity and variability of protein feedstuffs

Maintain performances with unconventionnal and changing protein feedstuffs

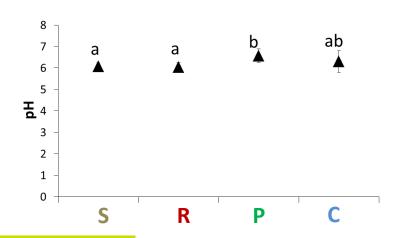

Objectives: Better understanding of protein digestion mechanisms

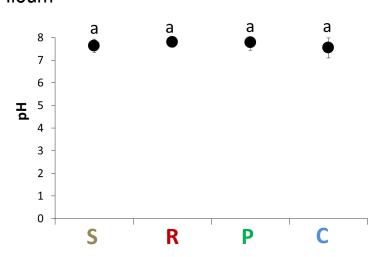
- Kinetic of protein digestion
- Peptides resistant to hydrolysis: identification, characterization
- Differences between protein sources
- Solutions (process, enzymes) to improve protein digestion


EXPERIMENTAL DESIGN



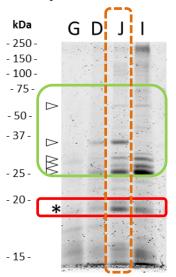
pH of digesta

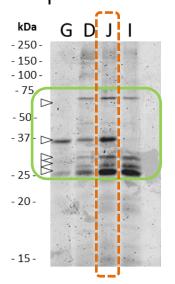

Results



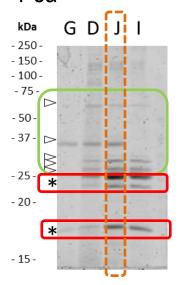
Jejunum

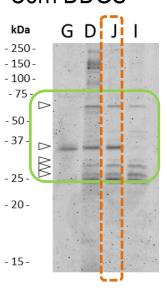
lleum




Identification of proteins

Results


Soybean meal

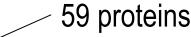

Rapeseed meal

Pea

Corn DDGS

5 common bands : 25, 26, 27, 36 et 55 kDa

- 3 diet-specific bands: 18 kDa (S) and 16 et 24 kDa (P)
 - Bands in jejunum were analyzed by LC-MS/MS



Characterization of proteins

Results

Bands of JEJUNUM

17 plant proteins

42 Gallus gallus proteins

11 (S) + 2 (R) + 4 (P) + 0 (C)

- High variability
- Limits:
- data available in databanks
- soluble proteins only
- But interesting proteins:
 - Kunitz inhibitor (S)
 - Bowman-Birk inhibitor (P)

18 common to all diets

15 diet-specific

9 in 2 or 3 diets

Classified according to predicted function

- ✓ Protein digestion and regulation
- ✓ Carbohydrate metabolism
- ✓ Lipid metabolism
- ✓ Amino acid metabolism
- ✓ Intestinal homeostasis

Integration of knowledge

	DIET			HOMEOSTASIS	
	Carbohydrates	Proteins	Nucleic acids	Fats	
Proventriculus Gizzard		Pepsin A precursor		A	
Pancreas Duodenum Jejunum	Maltase-glucoamylase Maltase glucoamylase-like X Amylase alpha 2A S (1)	Chymotrypsinogen 2-like K4 Chymotrypsin-like elastase i Trypsinogen Proproteinase E-like Chymotrypsin C Carboxypeptidases A1, A2, A Aminopeptidase N Xaa-Pro dipeptidase	2A deaminase	Not detected	Angiopoietin-related protein 1-like Hydroxyacylglutathione hydrolase
	\ \ \	S (4) + P (2)		S (2)	S (5) + P (1)
Ileum	OSES	AMINO-ACIDS	URIDINE		

CONCLUSION

Objectives:

- Better understand the mechanisms involved in protein digestion
- Identify differences related to protein source in the diet

Contribution of the study

- Gizzard pH
- Endogenous / plant proteins
- Common / diet-specific proteins

Technical limits

- Soluble proteins only
- Data available in databanks
- Qualitative approach only

To go further...

- Kinetic of protein digestion
- Quantitative approach
- ➤ Link with digestibility / performances

Recoules et al. 2015 (Submitted)

The experimental unit INRA – PEAT

• DSM

THANK YOU FOR YOUR ATTENTION

