Alternative protein sources for monogastrics: composition and functional assessment

SKKar, AJM Jansman, LKruijt, EH Stolte, NBenis, DSchokker, MASmits

66th EAAP, Warsaw 01-09-2015

Aim of project

- To characterize the protein component of new/alternative protein sources using proteomics
- To predict functionality of protein sources using bioinformatics
- To assess functional properties of new/alternative protein sources using animal models (mice and pigs)

To elucidate underlying mechanisms

Topics of today's presentation

- To characterize the protein component of new/alternative protein sources using proteomics
- To predict functionality of protein sources using bioinformatics
- To assess functional properties of new/alternative protein sources using animal models (mice and pigs)

To elucidate underlying mechanisms

Proteomic analysis of feed ingredients

Bioinformatic analysis of feed ingredients

For quality of life

Results: proteomic analysis

Number of proteins forming 90% of total protein fraction

Results bio-informatic analysis: amino acid composition

--- Chemically defined ACC

Results bio-informatic analysis: amino acid composition

Results: bioactivity

Proportion of biofunctional properties of proteins

Proteomics/bioinformatics analysis: conclusions

- MS-based analysis provides more detailed information on the composition of complex protein sources compared to conventional (nutritional) analytical approaches.
- MS-based analysis allows the detection of individual proteins in complex matrices at very high resolution.
- MS-based approach was effective in predicting the amino acid composition of protein sources.
- MS-based analysis allows the prediction of bio-functional properties of protein.

Layout of mice experiment

Animals: C57B Chemical composition of the experimental diet

Sex of Animal : Male

derived from new sources". The diets were identical with respect to all other nutrients compared to AIN 93-G

			D	iet			
Item	SBM	CAS	DWP	SDPP		WGM	YMW
Dry matter, g/kg	928 (914)	931 (957)	944 (930)	933 (924)		36 (917)	942 (929)
Crude protein, g/kg	150 (152.9)	263 (267.8)	79 (79.6)	24 Deiby flood	l intak	@ (121 52 .314)1	emeisib (148.3)
Ash, g/kg	50 (43)	40 (29)	83 (77)	49/@280.jy bo	ody w	eight7me	asurements)
Crude fibre, g/kg	55	44	44	A Sampling	of ilea	al ‡is sue a	and contest
Crude fat, g/kg	78 (75.5)	73 (65.3)	86 (73.7)	Sampling 77 (86.6)	of blg	od and ur 7 (70.3)	^{tine} 174 (160.1)
Starch, g/kg	251	249 🍟	249 🍟	249		268	261
Sugar, g/kg	295	263 👗	403 👗	263 👗		271	263
NSP, g/kg	71	8	17	14.9	_	2	18
Gross energy, KJ/g	(17.1) Timeline	(186)	(6.3)	(18.4)	-	(18)	(19.8)
Ca, g/kg	5.9	5.5	10.0	\$ 5.2	♦▲	5.2	6.1
P, g/kg	3.7	3.3	6.2	1.9	~	2.3	4.0
K, g/kg Experim	nental daos4	40.0	h6.5	14 4.5	21	4.0	3.6
Na, g/kg	1.1	1.2	5.9	8.2		1.3	1.0
CI, g/kg Age of	mice (davs)	3251	42.4	49 12.7	56	1.9	1.6
Linoleic acid, g/kg	37.7	35.8	35.8	35.8		35.8	35.8
Electrolyte balance, Meq	266	94	388	115.2		106	92

Performance parameters

Local response: Ileal gene expression profile (microarray)

Comparison of experimental diet vs SBM	Number upregulated gene-sets	Number down regulated gene- sets	Number of significantly enriched gene- sets (FDR < 0.05)
CAS	559	0	82
DWP	561	0	124
SDPP	591	0	63
WGM	516	0	62
YMW	559	0	98

Local response: Functional analysis of gene expression data at ileal tissue

Immune response

Local response: ileal microbiota

Systemic response: Cytokines and Chemokines in blood

- Panel of 23 biomarkers were analysed
- Increase of granulocyte colony stimulating factor (G-CSF) in SBM fed mice
- Increase of Eotaxin for DWP- and YMW-fed mice
- Increase of IL-12p70 in DWP-fed mice
- Decrease of G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, IL-6, IL-13 and monocyte chemotactic protein (MCP) in WGM-fed mice compared to SBM-fed mice

Systemic response: Metabolites

Systemic response: Amines, urine

Scores Plot

VIP scores

WAGENINGEN UR For quality of life

Mice experiment: conclusions and discussion

- Diets based on different protein sources affect host responses:
 - local (ileal microbiota, expression of (immune-related) genes)
 - systemic (serum cytokines/chemokines and urine metabolites)
- SBM differs clearly from the other experimental diets
- Diet specific effects identified (not shown here)
- DWP and YMW responses more similar to each other
- Knowledge may help to formulate monogastric diets

Acknowledgement

IPOP CN team of

Soumya.kar@wur.nl +31 (0) 687 500 105