

Frequently recorded sensor data may correctly provide health status of cows If data is handled carefully and errors are filtered away ...

Peter Løvendahl and Lars Peter Sørensen

Center for Quantitative Genetics and Genomics Department of Molecular Biology and Genetics Aarhus University, Denmark

Acknowledgement

Funding

- Danish Research Council
- Danish Milk Levy Foundation
- DeLaval Tumba Sweden

Collaboration

- Dairy herd owners
- DeLaval Denmark and Sweden
- Colleagues Martin Bjerring

Gadgets on the dairy farm

Why use sensors?

Fact:

An increasing number of dairy farms use sensor technology

Reasons:

- More cows loss of perspective
- Labor reduction
- Better detection of estrus/diseases
- Better milk quality (increased income)
- Cost reduction (in the long run)
- Optimization
- Clever sales person!
- Improve decision making

Aim of this talk

- To demonstrate how a sensor has potential to improve decision making
- The OCC sensor taken as example
- Does the sensor work as promised?
- How to interpret raw data if possible at all?
- What kind of messages are needed?
- Potential use outside the dairy farm
- Role in genetic evaluations?

So we got the OCC installed...

OCC output (raw measurements)

General	Counter (Teat level)				OCC(*1000)		
Animal Number	LF	RF	LR	RR	OCC (*1000)	Date	
1125	0	0	1	0	100	2006-10-18	But what about this one?
1198	0	0	0	1	20	2006-10-18	
864	0	0	0	0	25	2006-10-18	
945	0	0	0	0	23	2006-10-18	
997	0	0	0	0	19	2006-10-18	
976	0	0	0	0	150 🖊	2006-10-18	
1013	0	0	0	0	2455	2006-10-18	
1030	0	0	0	0	42	2006-18-18	
1071	_	_	_	_		2000 40 40	We need to check this cow

<u>Issue:</u> Difficult to make decision from one value - and there are other problems!

Sensor monitoring

Is the device running? Failures are expected!

Is the device measuring correctly?

First requirement – reliable data

- Are the measurements correct?
- Compare against gold standard test-day SCC

Requirement: monitoring module

Data: noise or signal?

Cow 653

Filtering and standardisation

- Fixed filter to take out obvious errors
 - Zero readings → "missing" / omit and repair
 - Extreme values → detection ? / omit and repair
 - Fixup routine → get the process going again fast
- Time series approach to monitor instrument: Weighted exponential smoothing

$$s_t = (1 - \alpha)s_{t-1} + \alpha y_t$$
 α is the smoothing constant

Time series were also applied to each cow

OCC model - noise reduction

Standardization and smoothing of data

OCC model – unusual data

Filtering of very low OCC values

- Likely measurement error
- May result in false positive alerts

Dealing with missing measurements

- No data → bad update = no new info
- Gradual increase (or decrease) of OCC values

Ready to use data - focus on the cow

Elevated mastitis risk

From smoothing we get OCC <u>level</u> and <u>trend</u> →

calculate Elevated Mastitis Risk (EMR)

Simple alert based on EMR threshold

OCC model – simple alerts

Cow 653

Advanced alert system

Mastitis can be graduated → EMR

- Persistent IMI cause "false alerts"
 - Fluctuating pattern → increased OCC variation
- New definition of persistent IMI
 - Threshold for OCC variance
 - 10-15 days delay from onset
- Additional health class
 - Advantage: All cows in the herd are assigned to a health class

OCC model – advanced alert system

Persistent IMI – another example

OCC IMI detection system

Udder health monitoring – herd level

Verification of sensor alerts

- Available gold standard for comparison?
- Gold standards: mastitis treatments, PCR, SCC
- Longitudinal study period
 - Relatively easy gold standard may already be available
 - Disadvantage: No udder health status on "non-treated" cows
- Cross-sectional study
 - Udder health status on all cows according to chosen gold stand.
 - Few "treated" cows
 - Disadvantage: costly especially in AMS herds manual sampling required

Potential use of OCC output

So far - conclusions

- Filtering + calculations → more useful for decision support
- Sensor check is crucial
- Clear signal is suitable in decision support
- Enables monitoring at cow and herd level
- Potential for data sharing
- Do we need official test procedures for sensors? Role of ICAR?

Then, what about genetics?

- Many sensor systems agreement on what biological trait to be expressed?
- Or better integrate over a number of systems recording different aspects or details
- Combine with traditional traits recorded in many animals

The key is to obtain an improved phenotype!

Thanks ...

