

Using a dairy cow model to interpret in vivo individual data and to upscale results at herd level through *in silico* experiments

Olivier MARTIN¹, Charlotte GAILLARD², Jakob SEHESTED², Nicolas C. FRIGGENS¹

¹INRA-AgroParisTech, UMR 791 MoSAR, F-75005 Paris, France ²Aarhus University, Foulum, 8830 Tjele, Denmark

Extended lactation

- EL : the cow is rebreed later in her lactation. Objectives:
 - maintain the lactation > 10 months
 - facilitate rebreeding
 - and a lower milk yield at the time of drying-off
- Need of more information about EL but
 - experiments are time consuming
 - number of animals are restricted
- ⇒ Prediction models to give output of a management in terms of production and reproduction in a short time.
- ⇒ GARUNS model (Martin and Sauvant 2010)

Objectives

- to determine if GARUNS is able to fit individual curves of milk yield, BW, BCS, DMI, milk fat, milk protein, milk lactose, of cows managed for <u>16 months lactation</u>
- 2) to simulate individual variability in milk yield, milk compositions and body weight, and
- 3) to predict which lifetime scenarios will be beneficial, in terms of performance and reproduction, regarding the lactation number and length (10 or 16 months lactation) as well as the energy density in the ration

GARUNS model (Martin and Sauvant 2010)

Predicted vs observed trajectories

Schematic diagram of the GARUNS model

Data

- Experimental trial on extended lactation conducted from 2012 to 2015 at the Danish Cattle Research Centre in Aarhus University (Denmark):
 - ✓ 62 Holstein cows
 - ✓ 30% first parity cows
 - Automatic milking robot
 - Fed ad libitum partially mixed ration
 - Energy density ~ 11.8 MJ ME/kg DM
- Records: insemination and parturition times, diet energy, BW, BCS, DMI, MY, and milk composition.

Fitting procedure

Fitting on individual cow data with a step-by-step fitting procedure

• Each of the 62 cows characterized by an adjusted version of the model with a specific set of 12 parameters.

Results fitting

Parameter	Description	Mean	sd	
w _M	Mature size	543.8	50.0	
$\mu_{ m Y}$	Level of production	1.4	0.2	
λο	Persistency	0.001	0.0006	
VL	Milk lactose secretion	0.99	0.01	
V _F	Milk fat secretion	1.1	0.11	
V _P	Milk protein secretion	1.04	0.07	
V _X	Ability of mobilizing	1.4	0.8	

⇒ GARUNS can be used to fit extended lactation curves

Results comparison EL and N

		Extended lactation		Normal lactation*		T test
Parameter	Description	Mean	sd	Mean	sd	P value
W _M	Mature size	543.8	50.0	521	59	0.07
μ _Y	Level of production	1.4	0.2	1.25	0.25	0.004
λ ₀	Persistency	0.001	0.0006	0.0017	-	-
VL	Milk lactose secretion	0.99	0.01	1.0	0.04	0.03
V _F	Milk fat secretion	1.1	0.11	1.2	0.1	0.02
V _P	Milk protein secretion	1.04	0.07	1.0	0.1	0.56
V _X	Ability of mobilizing	1.4	0.8	1.2	0.6	0.08

* Phuong et al. 2015. Deriving estimates of individual variability in genetic potentials of performance traits for 3 dairy breeds, using a model of lifetime nutrient partitioning. Journal of Dairy Science 98, 618-632

- Small significant differences in level of production
- Different groups, years, energy density diet (11.8 MJ ME for EL vs. 11.1 MJ ME in Normal)

⇒ Delayed conception and later gestation is the main effect on the lactation shape for EL relative to Normal

Prediction for different management scenarios

- <u>Virtual herd of 1000 cows</u> created with rnorm (R) from the previous parameters
- Virtual herd managed for different life scenario involving the length of the lactation:

Scenario	PC1[0]	PC1[1]	PC1[2]	PC1[2]	PC1[4]	PC1[5]	PC1[6]	PC1[7]
EL	450	224	224	224	224	224	224	224
Ν	450	60	60	60	60	60	60	60
PEL	450	224	60	60	60	60	60	60
PN	450	60	224	224	224	224	224	224

PCI[0] age at first conception

PCI[c] parturition to conception interval, where c is reproductive cycle number

Preliminary results

Differences regarding daily MY and DMI

> it shows that **N > PEL > > PN > EL**

 \Rightarrow EL for primiparous cows seems interesting

Next steps ...

 A reproductive module to adjust productive lifespan for the effects of performance on reproductive success

Thank you for your attention!

Relative priorities: GARUNS model

(Martin and Sauvant, 2010)

Results comparison EL and N

		Extended l	Extended lactation		Normal lactation*	
Parameter	Description	Mean	sd	Mean	sd	
W _M	Mature size	543.8	50.0	521	59	
$\mu_{ m Y}$	Level of production	1.4	0.2	1.25	0.25	
λ_0	Persistency	0.001	0.0006	0.0017	-	
У _N	Start of the lactation	0.68	0.27	-	-	
Uwea	End of the lactation	3.7	1.2	-	-	
γ	End of the lactation	0.79	0.38	0.032	-	
VL	Milk lactose secretion	0.99	0.01	1.0	0.04	
V _F	Milk fat secretion	1.1	0.11	1.2	0.1	
V _P	Milk protein secretion	1.04	0.07	1.0	0.1	
v _x	Ability of mobilizing	1.4	0.8	1.2	0.6	
ф	Weight of uterus/fetus	0.58	0.02	0.58	-	

* Phuong et al. 2015. Deriving estimates of individual variability in genetic potentials of performance traits for 3 dairy breeds, using a model of lifetime nutrient partitioning. Journal of Dairy Science 98, 618-632

Preliminary results

Over **<u>8 lactations</u>**

> no differences in total MY and total DMI

