

Genetic parameters of body temperature in laying hens exposed to chronic heat

T. LOYAU, T.B. RODENBURG, J. FABLET, M. TIXIER-BOICHARD, J. DAVID, M.-H. PINARD-VAN DER LAAN, T. ZERJAL, S. MIGNON-GRASTEAU

31th of August to 4th of September 2015

WHY DO WE NEED HEAT RESISTANT HENS?

World Egg Production (FAOStats, 2012) Frequency of heat waves in Europe (Fischer and Schär, 2010)

Selection programs of Laying hens in optimally controlled conditions Production performance vs. Thermal tolerance

HEAT DISSIPATION IN HENS

Anderson and Carter, 2007

EVAPORATIVE HEAT LOSS

MAN N

Evaporation

SENSIBLE HEAT LOSS Convection

Conduction

Radiation

MATERIALS AND METHODS

- 2 genotypes of commercial laying hens
- ✤ 12 pens of 200 birds: 8 collective pens and 4 pens with individual nests
- ✤ 2 stress treatments: 6 stressed pens and 6 control pens
- ✤ 3 floor pens per genotype and per stress group

MATERIALS AND METHODS

✤ 6 cycles of chronic heat at 35 week of age

Thermography measures

T. Loyau et al./ Genetic parameters of body temperature in laying hens exposed to chronic heat

MATERIALS AND METHODS

Hens placed in a wooden box, pictures taken with FLIR B335 camera

Analyses done with ThermaCam Pro 2.1 software

Mean shank temperature Mean comb temperature Mean wing temperature

STATISTICS

- Proc GLM of SAS used to check significant effects to include in the model
- VCE6 with an animal model used to estimate genetic parameters
 - Fixed effect of pen (N=12)
 - Fixed effect of heat stress treatment (heat vs normal)
 - Age of the hen
 - Ambient temperature of the pen
 - Number of pictures taken per bird (1 or 2)
 - Random direct genetic effect of animal

Results

Examples of pictures when it works ... and when it does not

31.5

20.5

31.5

17.8

IR_0592

Heritability estimates

Results

Genetic Correlations with shank temperature

Conclusions

Heritability estimates:

Wing \rightarrow Low heritability

→ Surface temperature reflects environmental temperature

Shank and comb \rightarrow higher heritability estimates

→ Heat dissipation partly under genetic control

Birds with poor plumage = less heat dissipation by shank

Surface temperature is correlated with egg quality under heat stress

Infrared thermography, a pertinent tool for phenotyping heat dissipation

Thank you for your attention

