EAAP 2015 - Genetics commission early career scientist competition

A new model for an imprinting analysis of Brown Swiss slaughterhouse data

Inga Blunk*, Manfred Mayer*, Henning Hamann⁺, Norbert Reinsch*

*Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany †Landesamt für Geoinformation und Landentwicklung, Kornwestheim, Germany

LEIBNIZ INSTITUTE FOR FARM ANIMAL BIOLOGY

FBN

Female animals

FBN

Motivation

- Effects on agricultural traits, e.g.:
 - Meat percentage, %
 - Carcass beefiness
 - Body composition traits

Potential application in animal breeding!

http://www.agrarhandel-kornhochheim.de/Bilder/Imagemap/Bullenh%E4lfte.jpg

FOR FARM ANIMAL BIOLOGY

LEIBNIZ

Motivation

Neugebauer model:

$$Y = X\beta + Z_s a_s + Z_d a_d + e$$

 $a_s = EBV$ of sires as sire $a_d = EBV$ of dams as dam

$$i = a_s - a_d$$

imprinting effect

http://www.edupics.com/coloring-pages-farm-c70.html

Motivation

Neugebauer model:

$$Y = X\beta + Z_s a_s + Z_d a_d + e$$

 $a_s = EBV$ of sires as sire $a_d = EBV$ of dams as dam

$$i = a_s - a_d$$

imprinting effect

$$Var\begin{bmatrix} \boldsymbol{a}_{s} \\ \boldsymbol{a}_{d} \end{bmatrix} = \boldsymbol{A} \otimes \begin{bmatrix} 1/2 \, \boldsymbol{\sigma}_{s}^{2} & 1/2 \, \boldsymbol{\sigma}_{sd} \\ 1/2 \, \boldsymbol{\sigma}_{sd} & 1/2 \, \boldsymbol{\sigma}_{d}^{2} \end{bmatrix}$$

A = additive genetic relationship matrix

$$\sigma_i^2 = \sigma_s^2 + \sigma_d^2 - 2\sigma_{sd}$$

imprinting variance

3

http://www.edupics.com/coloring-pages-farm-c70.html

LEIBNIZ

FOR FARM ANIMAL BIOLOGY

Practical problem:

• High effort to determine the **standard errors** of imprinting effects for a large number of animals

Practical problem:

• High effort to determine the **standard errors** of imprinting effects for a large number of animals

Goals

- Introducing an equivalent **imprinting model**
- Applicating this model to slaugther data in Brown Swiss

Neugebauer:
$$y_{ijk} = \mu + a_{s_j} + a_{d_k} + e_{ijk}$$

 $a_{s_j} = EBV \text{ of } sire j \text{ as } sire}$
 $a_{d_k} = EBV \text{ of } dam k \text{ as } dam$

Neugebauer:
$$y_{ijk} = \mu + a_{s_j} + a_{d_k} + e_{ijk}$$

 $a_{s_j} = EBV \text{ of } sire j \text{ as } sire}$
 $a_{d_k} = EBV \text{ of } dam k \text{ as } dam$

Imprinting effect:
$$i_d = a_d - a_s \Rightarrow a_{d_k} = a_{s_k} + i_{d_k}$$

JTE

$$y_{ikl} = \mu + a_{s_i} + a_{s_k} + i_{d_k} + e_{ijk}$$

 $a_{s_j} = \text{EBV of sire } j$ as sire $a_{s_k} = \text{EBV of } dam k$ as sire

$$y_{ikl} = \mu + a_{s_j} + a_{s_k} + i_{d_k} + e_{ijk}$$

$$a_{s_j} = \text{EBV of sire } j \text{ as sire}$$

$$a_{s_k} = \text{EBV of } dam \ k \text{ as sire}$$

$$i_{d_k} = \text{imprinting effect of } dam \ k$$

$$Y = X\beta + Z_s a_s + Z_i i_d + e$$

JTE

$$y_{ikl} = \mu + \underline{a_{s_j}} + \underline{a_{s_k}} + \underline{i_{d_k}} + e_{ijk}$$

$$a_{s_j} = \text{EBV of sire } j \text{ as sire}$$

$$a_{s_k} = \text{EBV of } dam \ k \text{ as sire}$$

$$i_{d_k} = \text{imprinting effect of } dam \ k$$

$$Y = X\beta + Z_s a_s + Z_i i_d + e$$

- Z_s contains entries for **sires** and **dams** (coded as "1")
- Z_i contains an entry for dams (coded as "1")

Mixed model equation for the new model:

$$\begin{bmatrix} X'W^{-1}X & X'W^{-1}Z_{s} & X'W^{-1}Z_{i} \\ Z'_{s}W^{-1}X & Z'_{s}W^{-1}Z_{s} + A^{-1}\lambda_{1} & Z'_{s}W^{-1}Z_{i} + A^{-1}\lambda_{2} \end{bmatrix} \begin{bmatrix} \beta \\ a_{s} \end{bmatrix} = \begin{bmatrix} X'W^{-1}y \\ Z'_{s}W^{-1}y \\ Z'_{i}W^{-1}X & Z'_{i}W^{-1}Z_{s} + A^{-1}\lambda_{2} \end{bmatrix} \begin{bmatrix} Z'_{i}W^{-1}Z_{i} + A^{-1}\lambda_{2} \end{bmatrix} \begin{bmatrix} \beta \\ a_{s} \end{bmatrix} = \begin{bmatrix} X'W^{-1}y \\ Z'_{s}W^{-1}y \\ Z'_{i}W^{-1}y \end{bmatrix}$$

- → **Standard errors** derived from diagonal elements
- → Direct estimation of **imprinting effects**

Mixed model equation for the new model:

 $\begin{bmatrix} X'W^{-1}X & X'W^{-1}Z_{s} & X'W^{-1}Z_{i} \\ Z_{s}'W^{-1}X & Z_{s}'W^{-1}Z_{s} + A^{-1}\lambda_{1} & Z_{s}'W^{-1}Z_{i} + A^{-1}\lambda_{2} \\ Z_{i}'W^{-1}X & Z_{i}'W^{-1}Z_{s} + A^{-1}\lambda_{2} & Z_{i}'W^{-1}Z_{i} + A^{-1}\lambda_{3} \end{bmatrix} \begin{bmatrix} \beta \\ a_{s} \\ i \end{bmatrix} = \begin{bmatrix} X'W^{-1}y \\ Z_{s}'W^{-1}y \\ Z_{i}'W^{-1}y \end{bmatrix}$

- → **Standard errors** derived from diagonal elements
- → Direct estimation of **imprinting effects**
- → Direct estimation of the **imprinting variance**

$$Var\begin{bmatrix}a_{s}\\i\end{bmatrix} = A \bigotimes \begin{bmatrix}\frac{1}{2}\sigma_{s}^{2} & \frac{1}{2}(\sigma_{sd} - \sigma_{s}^{2})\\\frac{1}{2}(\sigma_{sd} - \sigma_{s}^{2}) & \frac{1}{2}\sigma_{i}^{2}\end{bmatrix}$$

Application to slaughter data in Brown Swiss

Traits	Observations	Pedigree size
Net BW gain (g/d)	173,051	428,710
EUROP class	133,671	420,626
Fat score (1-5)	133,671	420,626
Killing out percentage (%)	3,226	24,347

http://www.krankykids.com/cows/cow_wall_country/switzerland/switzerland_sBreed_dName.html

Step 1

- Using the **Neugebauer model** $Y = X\beta + Z_s a_s + Z_d a_d + e$
- Estimating the **imprinting variance** σ_i^2
- Significance test via RLRT

Step 1

- Using the **Neugebauer model** $Y = X\beta + Z_s a_s + Z_d a_d + e$
- Estimating the **imprinting variance** σ_i^2
- Significance test via RLRT

Step 2

- Using the **new model** $Y = X\beta + Z_s a_s + Z_i i_d + e$
- Estimating the imprinting effects i
- Evaluation of the reliabilities

Estimated imprinting effects applying the new imprinting model:

We developed a new equivalent imprinting model

• Easy determination of standard errors for a large number of animals using existing software $\begin{bmatrix} XW^{-1}X & XW^{-1}Z_{s} & XW^{-1}Z_{i} \\ Z_{s}W^{-1}X & Z_{s}W^{-1}Z_{s} + A^{-1}\lambda_{i} & Z_{s}W^{-1}Z_{i} + A^{-1}\lambda_{i} \end{bmatrix} \begin{bmatrix} \beta \\ a_{s} \\ z_{s}W^{-1}X & Z_{s}W^{-1}Z_{s} + A^{-1}\lambda_{i} & Z_{s}W^{-1}Z_{i} + A^{-1}\lambda_{i} \end{bmatrix} \begin{bmatrix} \beta \\ a_{s} \\ z_{s}W^{-1}Y \\ z_{s}W^{-1}Y \end{bmatrix}$

We developed a new equivalent imprinting model

We detected imprinting effects in Brown Swiss

- Average relative imprinting variance of 9.6%
- Maternal gametes contributed $\geq 88\%$

Thank you for your attention!

H. Wilhelm Schaumann-Foundation Hamburg European Federation of Animal Science

- Jackson, S.P. and Blanton, J.R. (2001). Review: The Callipyge Gene in Sheep. Professionell Animal Scientist 17: 68-74.
- Neugebauer, N., Luther, H. and Reinsch, N. (2010a). Parent-of-origin effects cause genetic variation in pig performance traits. *Animal.* 4: 672-681.
- Neugebauer, N., Räder, I., Schild H.J., et al. (2010b). Evidence for parent-of-origin effects on genetic variability of beef traits. *J. Anim. Sci.* 88: 523-532.

tp://www.krankykids.com/cows/cow_wall_country/switzerland/switzerland_sBreed_dName.html

LEIBNIZ INSTITUTI FOR FARM ANIMAL BIOLOGY

H. WILHELM SCHAUMANN STIFTUNG

The Neugebauer model:

$$Y = X\beta + \mathbf{Z}_{s}\mathbf{g}_{s} + \mathbf{Z}_{d}\mathbf{g}_{d} + e$$

 $g_s = g_b + g_p$ = paternal gametic effect $g_d = g_b + g_m$ = maternal gametic effect

The imprinting effect:

$$i = (g_b + g_p) - (g_b + g_m)$$

= $g_p - g_m$

The imprinting variance:

$$Var\begin{bmatrix}\boldsymbol{g}_s\\\boldsymbol{g}_d\end{bmatrix} = G \otimes \begin{bmatrix}\boldsymbol{\sigma}_s^2 & \boldsymbol{\sigma}_{sd}\\\boldsymbol{\sigma}_{sd} & \boldsymbol{\sigma}_d^2\end{bmatrix}$$

$$\sigma_s^2 = \sigma_b^2 + \sigma_p^2 + 2\sigma_{bp}$$
$$\sigma_d^2 = \sigma_b^2 + \sigma_m^2 + 2\sigma_{bm}$$
$$\sigma_{sd} = \sigma_b^2 + \sigma_{bp} + \sigma_{bm} + \sigma_{pm}$$

$$\sigma_i^2 = (\sigma_s^2 - \sigma_{sd}) + (\sigma_d^2 - \sigma_{sd})$$

$$\sigma_i^2 = \sigma_s^2 + \sigma_d^2 - 2\sigma_{sd}$$

The imprinting effect is given by: $i = a_s - a_d$

The PEV of the imprinting effects is given by:

$$Var(\hat{i} - i) = Var(\widehat{a_s} - a_s) + Var(\widehat{a_d} - a_d) - 2Cov(\widehat{a_s} - a_s, \widehat{a_d} - a_d)$$

Off-diagonal elements of the inverted coefficient matrix are needed:

$$\begin{bmatrix} \beta \\ a_s \\ a_d \end{bmatrix} = \begin{bmatrix} X'W^{-1}y \\ Z_s'W^{-1}y \\ Z_d'W^{-1}y \end{bmatrix} \begin{bmatrix} X'W^{-1}X & X'W^{-1}Z_s & X'W^{-1}Z_d \\ Z'_sW^{-1}X & Z_s'W^{-1}Z_s + A^{-1}\alpha_1 & Z_s'W^{-1}Z_d + A^{-1}\alpha_2 \\ Z_d'W^{-1}X & Z_d'W^{-1}Z_s + A^{-1}\alpha_2 & Z_d'W^{-1}Z_d + A^{-1}\alpha_3 \end{bmatrix}^{-1}$$

Equivalence between the Neugebauer model and our new model

As stated by Henderson (1985), equivalent models generate a class of covariance estimates that are identical to those generated with the original model after **linear transformation**:

Possibility 1 of linear transformation:

Possibility 2 of linear transformation:

$$\begin{bmatrix} \sigma_s^2 \\ \sigma_i^2 \\ (\sigma_{sd} - \sigma_s^2) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_s^2 \\ \sigma_d^2 \\ \sigma_{sd} \end{bmatrix} \iff \begin{bmatrix} \sigma_s^2 \\ \sigma_d^2 \\ \sigma_{sd} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & +2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_s^2 \\ \sigma_s^2 \\ \sigma_i^2 \\ (\sigma_{sd} - \sigma_s^2) \end{bmatrix}$$

$$y_{ikl} = \mu + \underbrace{a_{s_j}}_{\Psi} + a_{s_k} + i_{d_k} + e_{ijk}$$

$$Y = X\beta + Z_s a_s + Z_i i_d + e$$

The correlation between a_{s_j} and a_{s_k} is constrained to 1 using an overlay procedure in ASRemI (Gilmour *et al.* (2006)).

 $m{Z}_{s}$ has the dimension n imes q $m{Z}_{i}$ has the dimension n imes q

n = # of observations q = # of animals within the pedigree

#	F	Μ	FB	F	Μ				0	0	0	0	0	0	1	-
1	0	0	10	9	8	7			0	0	0	1	0	1	0	1
2	0	0	11	5	7	L _S	=	0	0	0	0	0	0	0	1	1
3	1	0	12	9	8			0	0	0	0	1	0	1	0	0
4	1	0	13	5	7											
5	3	4						Г								٦
6	0	4						0	0	0	0	0	0	0	1	0
7	6	4				Z_i	=	0	0	0	0	0	0	1	0	0
8	3	2				-		$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	0	0	0	0	0	1	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
9	0	2							U	U	U	U	U	1	U	U

 $\boldsymbol{W} \text{ is a diagonal matrix with the elements: } \boldsymbol{w}_{ii} = \left[\frac{1/2\sigma_s^2(1-F_{s_i}) + 1/2\sigma_d^2(1-F_{d_i}) + \sigma_e^2}{1/2\sigma_s^2 + 1/2\sigma_d^2 + \sigma_e^2}\right]^{-1}$

It is a weighting which corrects the **error variance** of each observation due to the **Mendelian sampling component** with regard to the respective **inbreeding coefficient** of the parents.

 H_0 : $\sigma_i^2 = 0$ Imprinting arises when the correlation between both parental
effects is imperfect and/or the variances are different
leading to an imprinting variance greater zero.

Two models were fitted per trait:

The first corresponds to the *imprinting model*. The second to an equivalent animal model (*Mendelian model*).

Which model fits the data best and thus whether significant imprinting effects exist was tested by comparing REML log-likelihoods of both models using a REML likelihood ratio test (RLRT):

$$RLRT = 2(l_{R2} - l_{R1})$$

The RLRT is asymptotically distributed as a 1:1 mixture of two χ^2 distributions with one and two degrees of freedom (Self and Liang, 1987).

However, this only holds for the assumption of between-subject independence and under the null hypothesis. Because these requirements are not satisfied, we followed the suggestions of Neugebauer *et al.* (2010a and 2010b) and applied a χ^2 -distribution with two degrees of freedom to achieve a more conservative test.

Number of d.f.:

- 3 covariance parameters for the imprinting model
- 1 covariance parameter for the Mendelian model

➡ 2 d.f.

Beef trait data

Fattening bulls were slaughtered between 1994 and 2013. 4 slaughter traits observed in context of the unconducted progeny field test are provided by the genetic evaluation center of the LGL (Landesamt für Geoinformation und Landentwicklung).

<u>Net body weight gain (g/d):</u> Slaughter weight/age at slaughter. Average is 650g/d. Average age at slaughter is 629 days. Life weight at time of slaughter is ca. 500kg thus in accord. to KOP slaughter weight is ca. 200-250kg.

<u>Carcass conformation</u>: European muscle conformation system EUROP (E = excellent to P = poor). They were replaced by monetary values (670-655-635-585-525). Those reflect the fact that although prices differ over time, price differences between classes remain stable.

We treated <u>carcass fatness</u> as a trait rather than an effect. In this regard, this trait was available in form of scores ranging from 1 (lean) to 5 (very fat).

Trait	\hat{h}^2	$\hat{\sigma}_a^2$	$\hat{\sigma}_{s}^{2}$	$\hat{\sigma}_{_d}^2$	$\hat{\sigma}_{\scriptscriptstyle sd}$	$\hat{\sigma}_{_{e}}^{2}$	r	RLRT ¹	$\hat{\sigma}_i^2 \Big/ \hat{\sigma}_a^2$	$rac{\left(\hat{\sigma}_{s}^{2}-\hat{\sigma}_{sd} ight)}{\hat{\sigma}_{i}^{2}}$	$rac{\left(\hat{\sigma}_{d}^{2}-\hat{\sigma}_{sd} ight)}{\hat{\sigma}_{i}^{2}}$
Net BW gain (g/d)	0.279	804.960	359.660	445.300	359.890	2071.200	0.899	122.8***	10.58	-0.27	100.27
	(0.011)	(34.870)	(18.48)	(25.468)	(18.074)	(27.362)	(0.020)		(2.1)	(16.8)	(16.8)
EUROP class	0.155	58.614	27.027	31.587	26.634	320.080	0.912	27.6***	9.12	7.35	92.65
	(0.009)	(3.900)	(1.98)	(2.850)	(1.980)	(3.289)	(0.029)		(2.8)	(28.3)	(28.3)
Fat score	0.229	0.044	0.021	0.024	0.020	0.149	0.910	69.2 ***	9.17	12.31	87.69
	(0.012)	(0.002)	(0.001)	(0.002)	(0.001)	(0.002)	(0.022)		(2.2)	(22.2)	(22.2)
Killing out percentage	0.516	1.348	0.701	0.648	0.672	1.262	0.998	0.7	-	-	-
(%)	(0.092)	(0.267)	(0.138)	(0.201)	(0.135)	(0.221)	(0.096)				

¹REML likelihood ratio test; $RLRT=2(\log \text{likelihood}_{Imprinting model} - \log \text{likelihood}_{Mendelian model})$ ***P < 0.001

$$y_{ijklmn} = SD_i + PN_j + BT_k + b_1x + b_2x^2 + b_3x^3 + a_{s_l} + a_{d_m} + e_{ijklmn}$$

- y_{ijklmn} beef trait record
- SD_i fixed effect of i^{th} comparison group (fattening farm x date of slaughter)
- PN_i fixed effect of the j^{th} parity number (first, second and more calvings)
- BT_k fixed effect of the k^{th} birth type (singleton or twin)
- b the linear (b_1) , quadratic (b_2) and cubic (b_3) regression on slaughter age x
- a_{s_l} random additive genetic effect as sire l
- a_{d_m} random additive genetic effect as dam m
- *e*_{*ijklmn*} random residual

