NH₃ and N₂O emissions from three bedded pack barns in The Netherlands

EAAP Warsaw

2-9-2015, Hendrik Jan van Dooren

J.M.G. Hol, K. Blanken, P.J. Galama

Introduction

- Bedded pack barns as alternative for loose housing
- Inspired by examples in USA (Minnesota) and Israel
- Change in dairy housing has different effects
 - Welfare and animal health
 - Management (of bedding)
 - Cost price of milk
 - Use of compost as fertilizer
- First few farmers around 2007
- 2015: around 50 farmers
- Research on welfare, health, milk quality, costs and environment

Why emission measurements?

- Environmental impact of ammonia and nitrous oxide
 - Acidification/Eutrophication
 - Global warming
- Nitrogen losses from housing represents economic value
- Establishing an ammonia emission factor for this housing system
 - Dutch system of ammonia emission factors of housing systems (in kg NH₃ per cow per year)
 - 4 farms, 6 times over 1 year.
- References system: Loose housing slurry system (11 kg NH₃ per cow per year, zero grazing)
- Emissions before and after housing

Objective

To measure ammonia en nitrous oxide emissions from compost and composting (wood chips) bedded pack barn(s).

- Expectations:
 - Higher NH₃ emissions due to larger area per cow
 - Risk of N₂O emissions due to composting processes
- Flux chamber measurements

Overview of bedded pack dairy barns

Farm	Lying area		Walking area	
number	Material	(m²/cow)	Material	(m²/cow)
1	Wood chips (WC)	12,5	Concrete slats	5,0
2	Wood chips (WC)	15,0	Concrete slats	4,0
3	Wood chips (WC)	15,0	Concrete slats	4,0
4	Wood chips (WC)	16,0	Solid asphalt	3,0
5	Wood chips (WC)	8,5	Concrete slats	1,5
6	Compost (C)	18,0	Concrete slats	4,0
7	Compost (C)	22,0	None	0,0
8	Compost (C)	9,5	Concrete slats	7,0
9	Compost (C)	22,0	Concrete slats	4,0
10	Straw (S)	10,0	Concrete slats	3,0

- Each selected barn had two 24 hour measurements
- Farm 9 only NH₃. Low input level.

Measurements methods

- E = V (NH_{3,out} NH_{3,in}) (similar for N₂O)
- Ventilation (V in m³/h) two tracer gas methods
 - $V = CO_2$ -prod/ $(CO_{2,out} CO_{2,in})$
 - CO₂ balance method (CIGR CO₂ production equations)
 - Estimation of CO₂ production of bedding.
 - SF₆ tracer gas method (constant injection rate)
- Concentration measurements (mg/m³)
 - NH₃/CO₂: Outlet Open path laser (GasFinder, Boreal)
 - N₂O: Lung method and GC in lab
 - SF₆: CompactGC (Interscience)
 - CO₂: Innova 1312 photo acoustic gas monitor

Schematic setup of measurements (1 and 8)

WAGENINGENUR

Measurement of CO₂ production from the bedding of farm 9

- Flux chamber (closed) on 20 spots per day
- Around 20 spots each day
- Result: 30-40% of cow production
- Conclusion: CO₂ release from bedding can't be ignored!!

Results: ammonia emission

■ Red line is reference level: 11 kg NH₃/animal/year

Results: nitrous oxide emission

■ Red line is reference level: 0,23 kg N₂O/animal/year

Results: nitrogen losses through NH₃/N₂O

- N-loss (reference=100%)
 - Wood chips: 166%
 - Compost: 397%

- N₂O share
 - Wood chips: 11%
 - Compost: 5%
 - Reference: 2%

First attempt to explain differences

- Clear temperature differences between compost and composting of wood chips
- Difference in microbial activity (composting)
- Effect of available area

Conclusions

- Ammonia emissions compost 2,5 times higher than composting wood chips
- Compost and wood chips both higher than reference system
- Considerably higher N₂O emissions:
 - Wood chips > Compost
- Further development of composting of wood chips
 - Optimization of composting process
 - Reduction of emission from feed alley
- No further development of compost barn
- Comparison of systems should include losses before and after housing.

Thank you

Report: Sustainability aspects of ten bedded pack dairy barns in The Netherlands

http://edepot.wur.nl/350932

