

The Institute of Agricultural and Fisheries Research

UNIVERSITEIT **GEN1**

INNOVATION **IN LIVESTOCK PRODUCTION: FROM IDEAS TO PRACTICE**

WARSAW, POLAND

Model-based tool to estimate the NH₃ emission reduction potential of adapted dairy housing systems

IIASA

Luciano B. Mendes* Peter Demeyer **Eva Brusselman** Nico W. M. Ogink Jan G. Pieters

Motivation

Flanders

is agriculture and fisheries

1. NH_3 emissions in Flanders (Belgium) due to agriculture/livestock production is relatively high

2. In 2014, Flanders Government established PAS to address Natura2000

3. Certifications of emission reduction efficiency (RE) will be issued to adapted/new livestock systems

4. REs are determined via modeling and later validated with measurements

Status quo of NH₃ emission modeling

1. The mechanistic NH_3 emission model of Elzing & Monteny et al. 1997

2. Applied to a cattle barn by Monteny et al. 1998

3. In 2014, Snoek et al. published a literature review study and performed a sensitivity analysis

Fig 1. Components of the floor and pit modules (Monteny et al., 1998).

urine

 $[Urea] \xrightarrow{\mu_{urea}} [NH_3]_{liq} \xrightarrow{\mu_{urea}} [NH_3]_{gas, bound}$

 $V_{fl}^*q_{TAN} = V_{fl} \cdot \mu_{urea} - A_{fl} \Phi_{volat}$

- A_{puddle}

[NH₃]_{gas, air}

buddle

[NH₃]_{iiq}↔ [NH₃] _{gas, bound}

 $V_{(u+fec)} * q_{TAN} = -A_p * \phi_{volat}$

mass balance:

INHA I

 φ_{volat}

A_{floor}

a_{puddle}

[NH⁺].

mass balance:

Objective

To adapt the NH_3 emission model with low-emission management techniques in order to predict emission reduction factors for new/adapted dairy cattle barns.

NH₃ Emission Model Principles

1. Breakdown of urea into NH_{4}^{+} in the presence of urease 2. Dissociation of NH_4^+ into NH₃ 3. Mass transfer of NH_3 within the concentration ΒL

4. Convective mass transfer of NH_3 to free airstream

Fig 1. Components of the floor and pit modules (Monteny et al., 1998).

Governing Equations

Modeling NH₃ emissions from a single urine puddle at floor (Elzing & Monteny, 1997)

Fig 4. NH₃ emission dynamics from a single

Governing Equations

Modeling NH₃ emissions at manure pit

$$E = \frac{17}{14} \times \frac{k \times A \times [TAN] \times f}{H}$$

Total barn NH₃ emissions:

 $E_{NH3,total} = E_{NH3,floor} + E_{NH3,manure pit}$

Model 100% made in Microsoft Excel® and some VBA Macro

Defining the Standard Cattle Barn

- A standard cattle barn was considered as an ordinary system, traditionally used and commonly found in Flanders
- No relevant NH₃ emission mitigation strategy was considered
- Floor is slatted and no cleaning applied

Fig 5. Histogram of NH_3 emission factor from standard system from^{10.5} multiple random urination times.

Fig 6. Compartimentalization of NH3 emissions from a dairy cattle barn and places where mitigation strategies can be applied.

Cleaning of Floor

• The masina peeded f the curves was calibrated according; to the Michaelis-Menten Dynamics, - Type of scraper (robot or cable pulled); adjusted to experimental data by Dai & Karring - Speed of scraper; (2014) - Scraping frequency.

Fig 7. Emissions in an 'animal-place' basis with and without cleaning floor.

Flushing the Floor

Information needed:

- Flushing fluid volume and pH
- Estimate of how much of the flushing fluid remains on the floor

Modelling Different Floor Types

Information needed:

- Area and depth of the urine puddle for each type of floor

Fig 10. Different floor types allow for different urine puddle areas and depths (Source: Snoek et al., 2010).

Table	1. Puddle	area and	depth		
for	different	floor	types		
(Sourd	ce: Mont	.eny, 20	015 –		
Personal communication).					

Floor type	Urine puddle area (m²)	Puddle depth (mm)
Traditional slatted floor	0.80	0.48
Solid floor (beton)	1.20	0.58
ECO floor	0.80	0.40
G3 floor	0.80	0.40
Slopped grooves	0.80 - 1.20	0.40
EA floor; G6 floor	0.80	0.27
Agra Matic floor	1.20	0.17
Groene Vlag floor	0.80	0.15

Global Sensitivity Analysis: Practical Implications

Fig 11. Graphical representation of the effect of different PDFs assigned to the model inputs on its output.

Benefits:

- Establish Cls
- Sort the most relevant variables out

RESULTS: Defining the minimum number of iteractions for GSA

Number of simulations

Fig 12. Convergence of model unconditional variance as a function of the number of simulations and input variability magnitude.

Variable	First order sensitivity (dimensionless)	Rank
Acfloor		
Acpit	0.002	
dp	0.030	3 rd
Uo	0.028	4 th
TAN		
Uf	0.002	
μтах		
Km	0.003	
Tfloor	0.002	
Tpit	0.001	
pHfloor	0.168	2 nd
pHpit	0.297	1 st
ufloor	0.002	
upit		
CF	0.002	
CE		
FR		
FE		
Sum	0.538	

RESULTS: Preliminary Ranking of Variables

Table 2. Partial results from the 'Global Sensitivity Analysis'

Conclusions

16/17

- 1. The NH₃ emission model was successfully translated into a spreadsheet calculator
- 2. Implementation of management strategies to the NH_3 model is possible
- 3. GSA confirmed that model is largely sensitive to source pH and geometry

Thank you!

International Institute of Applied Systems Analysis Schlossplatz 1 2361 Laxenburg, Austria T +43 2236 807 565 GSM +43 676 969 2474 *Luciano B. Mendes* mendes@iiasa.ac.at www.iiasa.ac.at Instituut voor Landbouwen Visserijonderzoek Burg. Van Gansberghelaan 115 9820 Merelbeke – Belgium T + 32 (0)9 272 28 00 F +32 (0)9 272 28 01 *Peter Demeyer* Peter.Demeyer@ilvo.vlaanderen.be www.ilvo.vlaanderen.be

