

Combining Automatic Milking and Precision Grazing

B. O'Brien, A. Van Den Pol-Van Dasselaar, F. Oudshoorn, E. Sporndly, V. Brocard and I. Dufrasne

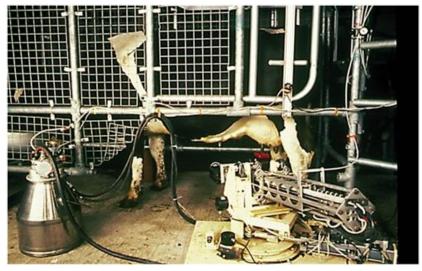
Teagasc, Ireland; Wageningen UR Livestock Research, The Netherlands; Danish Agricultural and Food Council, Denmark; Swedish University of Agricultural Sciences, Sweden; Institut de l'Elevage, France; University of Liege, Belgium

Outline of presentation

- Progression in automatic milking
- > AUTOGRASSMILK project
- > A snapshot of results mid way though the project
- Focus on the Irish perspective
- Results from 2 recent trials
- Current research
- Grazing management
- Economic aspect
- Concluding remarks

What is an automatic milking system ?

- The AM system can perform the tasks of:
- cow identification,
- supplementary feeding,
- teat washing,
- teat location,
- milking cup attachment,
- milking and
- cup removal
- all without human intervention



The Irish Agriculture and Food Development Authority

AUTOGRASSMILK

1st AMS Units

- 1985 First milking cup attached to a cow using a robotic arm in exp. setting
- 1992 First commercial AMS installed on a farm in The Netherlands

One of the first successful attempts in attaching a teat cup to an udder with robotic arm, Silsoe Research, UK. (Picture: EJ Hillerton) Source: www.dairynz.co.nz Lely Press Release 15th Aug 2012: more than 15,000 Lely Astronaut Robots sold

DeLaval Press Release 10th Sept 2013: 10,000 Voluntary Milking Systems sold

Current estimate 2015: Up to 30,000

The Irish Agriculture and Food Development Authority

AUTOGRASSMILK

Further development in early 2000s Integrating automatic milking systems with grazing

Australia:

http://www.dairynz.co.nz/page/pageid/2145870032/Latest_Research_ and_Development

New Zealand:

http://www.dairynz.co.nz/page/pageid/2145869624/Automated_Mi lking_Systems_AMS_

MICHIGAN STATE UNIVERSITY Pasture Dairy Center

USA:

http://pasturedairy.kbs.msu.edu/robotic_milking/

Research integrating automatic milking with grazing using different systems

Mobile AMS at University of Liege, Belgium

Mobile AMS at Institut de l'Elevage, Trévarez, France

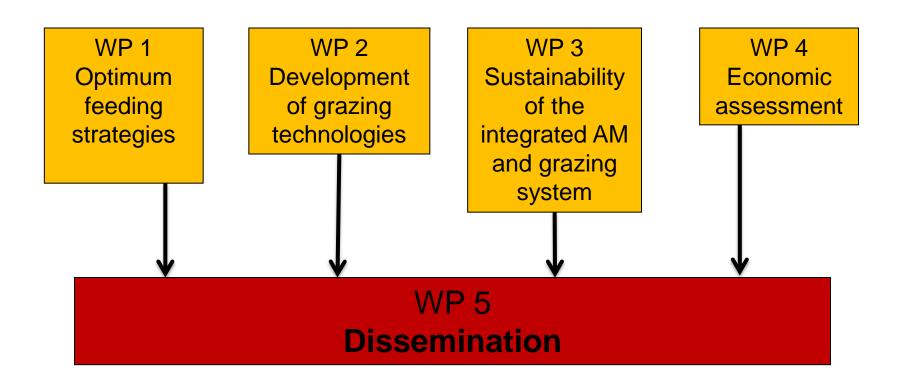
Rotary automatic system Swedish University of Agricultural Sciences, Sweden

Situation: Automatic milking (AM) and grazing in EU & Ireland

- AM is increasing in most EU countries
- But here AM usage is ssociated with a decrease in grazing
- There is also increasing interest in AM in Ireland
- But in Ireland the majority of milk production is from spring calving herds on a seasonal grass based system
- Challenges:
 - (i) increase pasture grazing in conjunction with AM in EU countries with traditional indoor systems
 - (ii) if AM to be introduced in Ireland have to be integrated with an intensive grazing based system so that the established economic benefits of grazing will be maintained

Grazing management in context

- A strong relationship between costs of production and proportion of grass in the cow's diet
- French et al. (2015) profit per hectare is increased by €267 for each additional tonne of grass utilized within dairy systems
- Dutch study: zero grazing farms earned ~€0.5 to 2.0 /100 kg milk less than farms using full or time limited grazing (Van den Pol-van Dasselaar *et al.*, 2008)
- Competitive advantage of grazed grass expected to increase :
 - anticipated higher concentrate prices
 - conserved feed costs expected to continue to increase contractor charges also –inflation in labour costs, energy and machinery costs.
- BUT the higher the proportion of grass in the cows diet the more important is accurate measurement of pasture it is critical for effective grazing management


Representatives from 6 countries developed a proposal for FP7 funding 14 partners – 6 research performers, 6 SME- associations and 2 end-user farmers

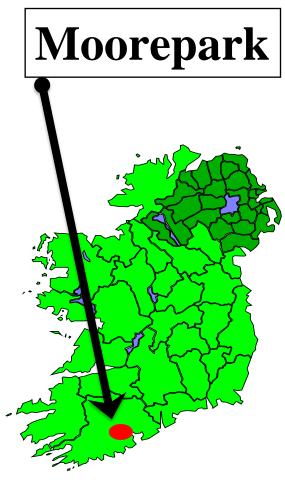
	RTD	SME-AG	Country	
	Teagasc	IGA	Ireland	
	IDELE	CNIEL	France	
	WLR	LTO	The Netherlands	
	SLU	SDA	Sweden	
	Ulg	CDL	Belgium	
Aidan & Ann Power	AU	VFL	Denmark	
Robotitc Farm SME Farm IE		SME Farm IE		
SME Farm DK		Ceagasc		
Thure and Susanne Worm				AGRICULTURE AND FOCO DEVELOPMENT AUTHORITY
KNOWLEDGE CENTR FOR AGRICULTURE		IRISH GRASSLAN		rland
_			atites	THE CIRCA GROUP E U R O P E
WAGENINGENUR For quality of life	INSTITUT DE VWW.idele.fr	AARHUS UNIVERSITY	Omité du Lait Université de Liège	

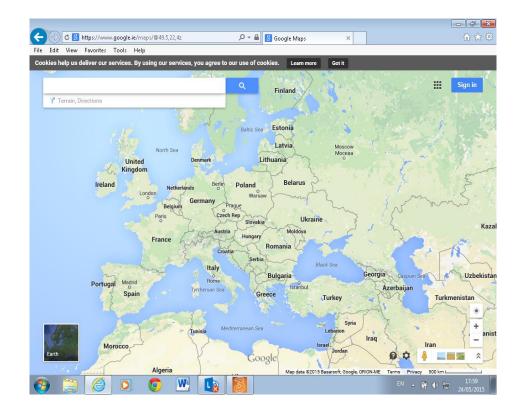
FP7-SME-2012-314879-AUTOGRASSMILK is co-funded by the European Commission

Graphical presentation of the project

Planned deliverables of project

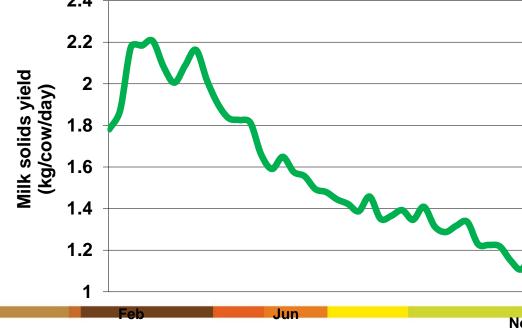
- Protocols for optimum feeding strategy for dairy cows incorporating grazing with AM technology for the various countries as influenced by grass supply and quality, farm infrastructure and cow type
- Pasture management tools that will facilitate AM dairy farmers to implement excellent grazing management practices
- A sustainability assessment tool for farmers to evaluate their own AM /cow grazing system
- Web based decision support tool that will facilitate dairy farmers to optimise economic efficiency when combining grazing with AM technology
- Guidelines for optimized operation of both mobile and carousel AM units in grazing scenarios




Summary of findings at mid term review

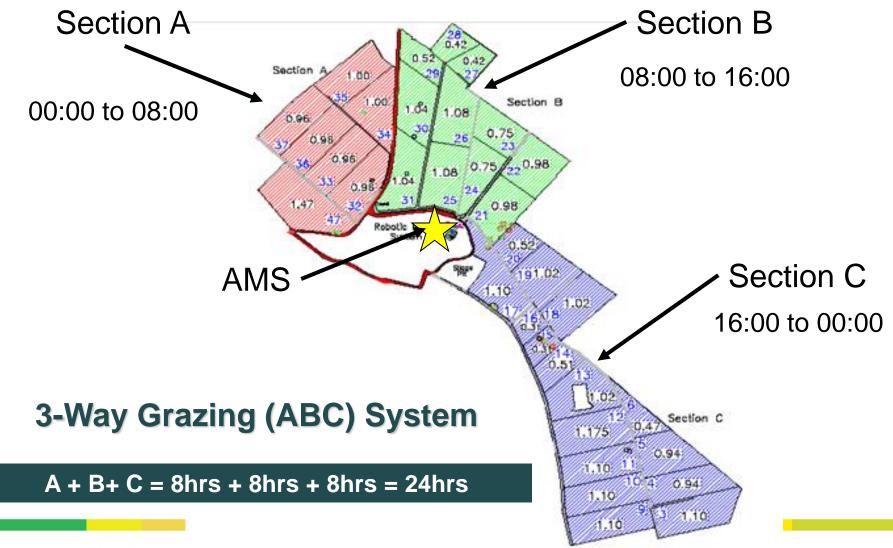
- In Ireland (2013) a 70 cow herd was milked in an AM system with grass contributing 85% of cow diet. The average milk yield was 4,222L and milk solids yield was 369kg
- Swedish study (2013) found no difference in milk production of high yielding cows on diets of 8% and 27% grazed grass
- French study showed grazing can be combined with AM and, although milk yield was reduced, feed cost was lowered substantially (by 66% per1,000 L milk)
- Belgian study demonstrated that supplementation with concentrates during pasture shortage increased milk yield, but the economic cost has to be examined

- Climate: mild, temperate; Rainfall: ~1500mm
- Excellent grass growth; 10 tonne DM/ha/year
- Growth season–280d; Dairying profitable enterprise
- 18,000 farms; 1.2m cows; 90% dairy products export

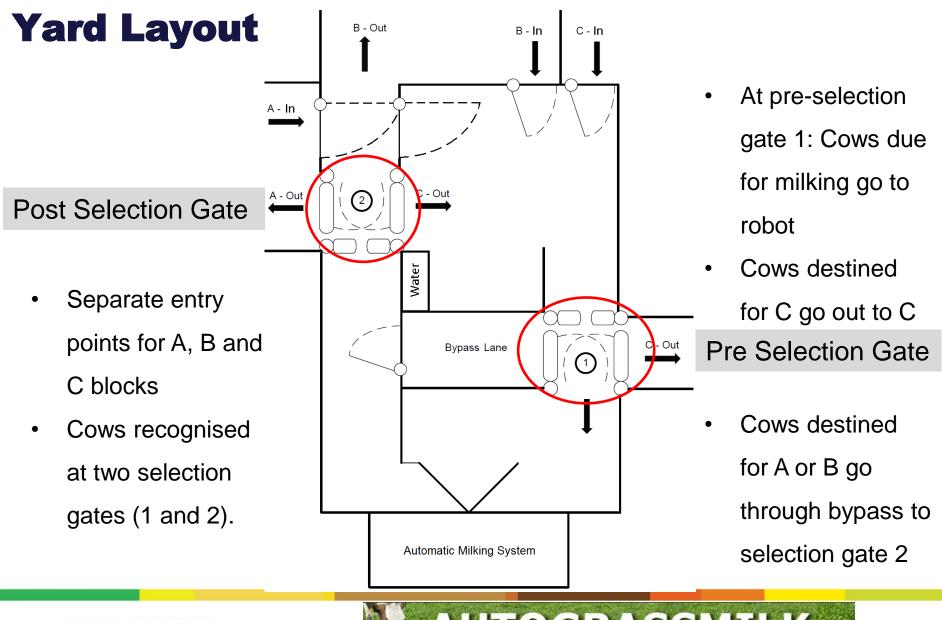

AUTOGRASSMILK

Research perspectives in relation to grazing

- in most EU countries include some grazed grass in cow diet if possible on automatic milking farms
- in Irish scenario integrate automatic milking into a grass based system of milk production



- Seasonal limitation peak milk yields
- Correct grass allocation critical for optimal cow visits to the AM unit
- Time spent waiting to be milked
- Achieving high utilization of the AM unit to minimize capital costs



ABC grazing system to aid movement of cows to the milking unit

Specifically in Ireland

Milking frequency (MF) is likely to be less than in indoor systems and quality and quantity of grass deteriorates in autumn (late lactation)

Report on 2 specific studies

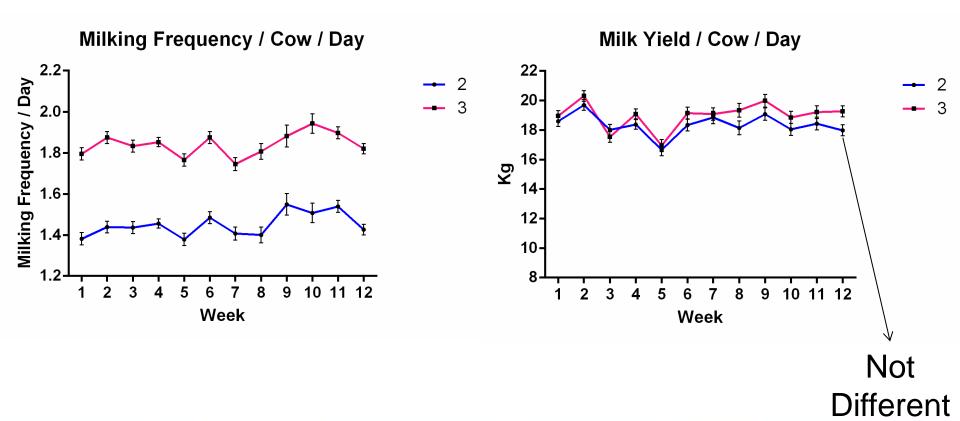
- Examine effect of reduced MF on milk production
 and cow traffic in mid lactation
 - Examine effect of different MF and concentrate supplementation levels on milk production and cow traffic in late lactation

Milking frequency trial in mid lactation (May to Aug 2014)

Materials and methods:

- 12/05/2014 to 03/08/2014 (Trial period = 12 weeks)
- 64 cows in two groups, each group balanced for: breed, lactation, days in milk, previous 20 days milk production and milking frequency
- Treatment: Milking Permission 2 & 3 times /d (adjustment period =10d)
- Measurements:
 - <u>Milk Characteristics:</u> Milk Yield
 - <u>Cow Traffic:</u> Milking Frequency, Wait Time, Box Time

Results


	MP 2	MP 3	Difference	<i>p</i> value	
Milking Frequency/day	1.5	1.8	0.3	<.0001	Different
Milking Interval/visit (h)	15.1	12.6	2.5	<.0001	Different
Milk Yield/visit (kg)	12.7	10.4	2.3	<.0001	Different
Milk Yield/day (kg/cow)	18.4	19.0	0.6	NS	Not Different
Milk Duration/day (min)	10.7	12.3	1.6	<.0001	Different
Wait Time/day (h)	1.8	2.5	0.7	0.0007	Different

AUTOGRASSMILK

Effect of milking frequency

- Concentrate consumed at AMS kg/cow/day = 0.7
 - Total grass DM kg/cow/day = 17.3

The Irish Agriculture and Food Development Authority

UTOGRASSMILK

Conclusions

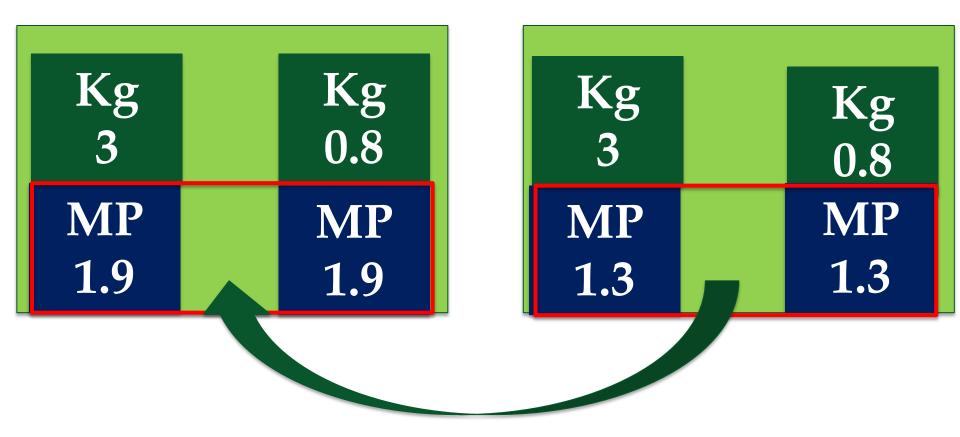
Cows milking 1.8 and 1.5 times per day produced 19.0 and 18.4 kg of milk/cow/day, respectively

Not significantly different

- Potential to reduce milking frequency without adverse production effects
- Reduced MF reduced waiting time potentially good less time standing on concrete
- Reduced MF reduced milking duration /day and increased AMS free time and therefore would permit more cows to be milked throughout the day – potential for larger herd size

Milking frequency and supplementation trial in late lactation (Aug to Nov 2014)

Materials and methods:

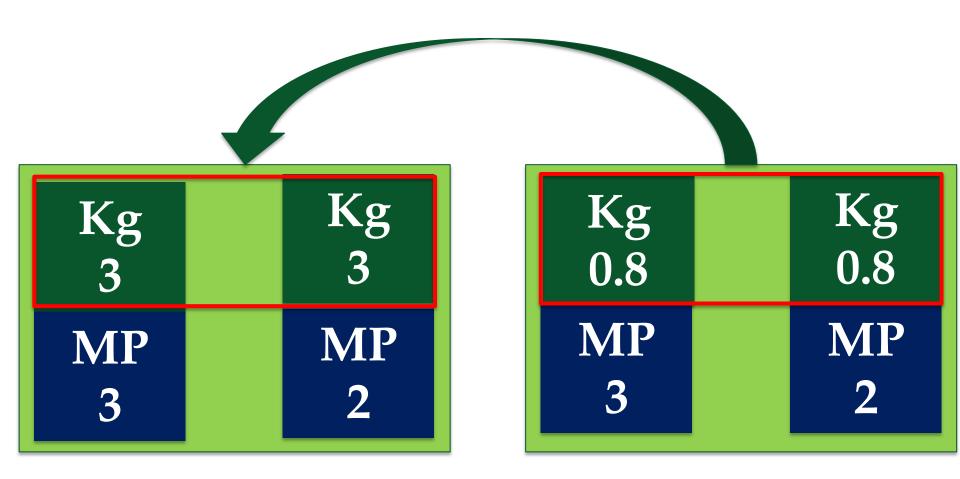

- 18/08/2014 to 02/11/2014 (11 weeks)
- 64 cows in four groups, each group was balanced for: breed, lactation, days in milk, previous 14 days milk production and milking frequency
- Treatment: Milking Permission 2 & 3 times/d (adjustment period =14d) and supplementation at 0.8 and 3.0 kg
- Measurements: <u>Milk Characteristics:</u> Milk Yield, composition, SCC, TBC; <u>Cow Traffic:</u> Milking Frequency, Wait Time, Box Time;

Grass measurements: grass cover, allocation, height

Analysis – <u>Milking frequency</u>

The Irish Agriculture and Food Development Authority

AUTOGRASSMILK


Results – Milking permission

	Milking Permission/Day			
	3	2	p value	
Milking Frequency/day	1.9	1.3	<.0001	Different
Milk Yield/day (kg/cow)	15.7	15.0	0.002	Different
Milk Yield/visit (kg/cow)	8.1	11.1	<.0001	Different
Milking Interval/visit (h)	11.6	16.6	<.0001	Different
Milk Duration/day (min)	10.5	8.6	<.0001	Different
Wait Time/day (h)	2.1	1.6	0.003	Different

AUTOGRASSMILK

Analysis - Concentrate

The Irish Agriculture and Food Development Authority

AUTOGRASSMILK

Results - concentrate

	Concentrate/Day (kg)			
	3.0	0.8	p value	
Milk Yield/day (kg/cow)	16.3	14.5	<.0001	Different
Milk Yield/visit (kg/cow)	10.0	9.3	0.008	Different
Milking Interval/visit (h)	13.6	14.6	0.012	Different
Milk Duration/day (min)	9.9	9.2	0.001	Different
Wait Time/day (h)	1.7	2.0	0.230	Not Different

Conclusions

- Reducing MF in late lactation
 - reduced milk yield
 - increased milking interval (>16h)
 - reduced milking duration and waiting time
- A milk yield response to concentrate supplementation was obtained

SEVENTH FRAMEWORK FP7-SME-2012-314879-AUTOGRASSMILK is co-funded by the European Commission

2015 - Optimum cow breed/type for an integrated grazing and AM milk production system

Study 1 – Spring Supplementation

• Treatment: high and low concentrate

Study 2 – Breed Comparison

• HOxFR v JExHO v NR

Study 3 – Autumn supplementation

• Treatment: high and low concentrate

- Grass is the main component
 of the diet
- Grassland management is vital

Need to:

- Grow large quantities of grass
- Utilise as grazed grass
- Long grazing season
- Optimise milking frequency
 - Milk 80 cows per robot
 - Milking frequency 1.5 times/day

The Irish Agriculture ar

Challenge of grass and grazing management on farms where automatic milking is integrated with grazing

Parting harbage mass 1300 - 1500 kg DM/ha

Post grazing sward height 4.0 - 4.5cm

Monitor Farm Study

Conducting data collection on farms over 2 year period (2014, 2015)

Environmental data

 Electricity and water - total energy of milking process and cooling, water usage recorded

Nutrient use and farm inputs – fertiliser
 used, silage made, manure management,
 contract use, farm fuel
 Labour data collected monthly

Economic data Production data (milk

yield, composition, SCC

The Irish Agriculture and Food Development Authority

AUTOGRASSMILK

Economics

Comparison of conventional and AMS systems

- Interaction between capital investment, labour requirement and running costs
- Financial metrics: profitability and return on investment.
- Optimizing the system
 - Focus on output of the system rather than output per cow
 - Reducing MF and increasing cow number versus higher number of high yielding cows
- Additional Scenarios
 - External land block Fragmentation
 - Alternative enterprise, beef or tillage
 - Working off-farm

Concluding: Where do we go from here

- Can reduce milking frequency without reduction in milk yield
- But limit
- Could have larger herd size
- Focus on maximizing output from system rather than cow
- Look at MS best breed
- Focus on maximizing cow number by reducing milking frequency during peak – this is the limiting time – but could have carry over effect
- Focus on grazing management AB versus ABC grazing
- Altering grass availability and gate time changes to maximize milkings
- AM is being discussed and considered increasingly in Ireland

http://autograssmilk.dk/