Successful grazing with automatic milking

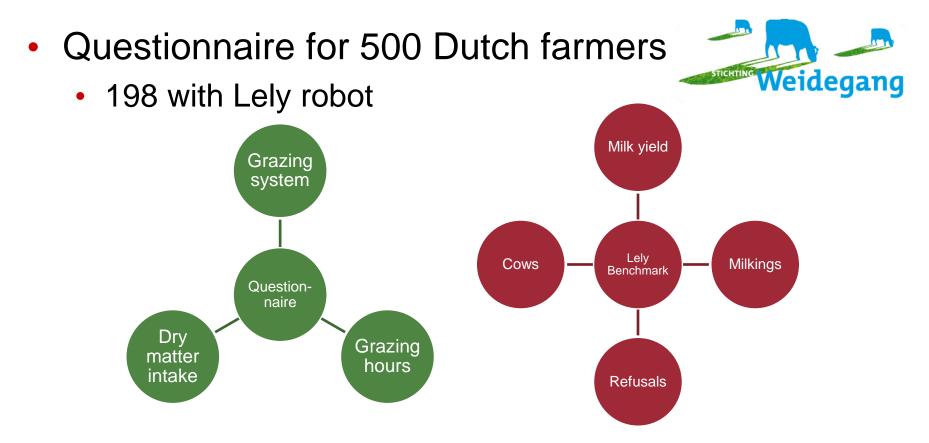
A.J van der Kamp, G.L. de Jong, A. Gouw, J. Cornelissen, F. Tuninetti, T. Joosten

Lely International Farm Management Support Arjen van der Kamp

innovators in agriculture

www.lely.com

Content

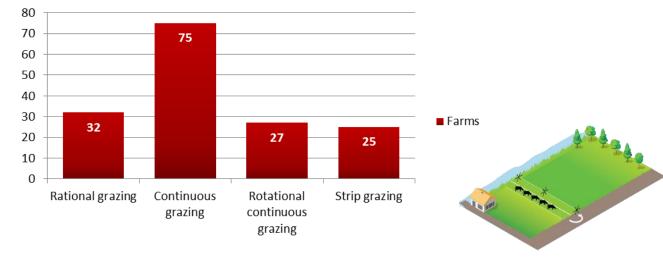

- innovators in agriculture

- Research setup
- Results
- Discussion

Research setup

innovators in agriculture

R Studio: Linear Mixed-effects modelling


Descriptive stats

innovators in agriculture -

		Summer	Winter
Milk yield	Average	27.3	27.4
	Minimum	10.3	13.5
	Maximum	37.8	37.5
Milkings	Average	2.55	2.74
	Minimum	1.46	1.47
	Maximum	3.65	3.46
Refusals	Average	3	4.1
	Minimum	0.2	0
	Maximum	14.4	17.7
Free time	Average	31.9	25.3
	Minimum	3.3	1.6
	Maximum	68.7	72.3

Descriptive stats

innovators in agriculture

Farms

LELY

innovators in agriculture

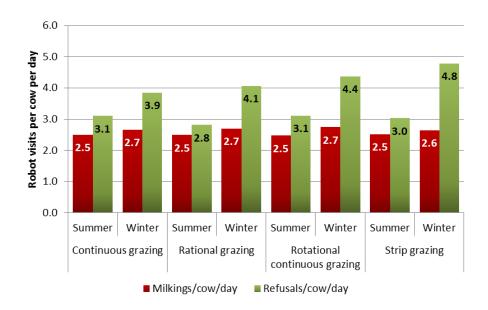
Milk Production

Results

= Grazing system * Season + FarmID(random)

	Value p	o-value	- [hab] 28.0						28.1		
ntercept (Continuous grazing, Summer)	27.2	0.00 *	- 27.5								
System: Rational grazing	-0.45	0.61	hep 27.0	27.2	27.3			27.2		27.0	
system: Rotational continuous grazing	-0.04	0.97	e 26.5	-		26.7	26.6			27.0	
System: Strip grazing	-0.16	0.87	ð 26.0	-						-	
Season:Winter	0.11	0.13	a 25.5				-			_	25.6
Rational grazing - Winter	-0.20	0.12	bit 25.0 24.5				_		_	_	25.6
Rotational continuous grazing - Winter	0.81	0.00 *	b 24.5	-			_			_	_
Strip Grazing - Winter	-1.56	0.00 *	24.0								
			- Milk	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winte
			-	Continuo	us grazing	Rationa	l grazing		tional us grazing		grazing

- With strip grazing higher milk production
- With rotational continuous grazing lower milk production

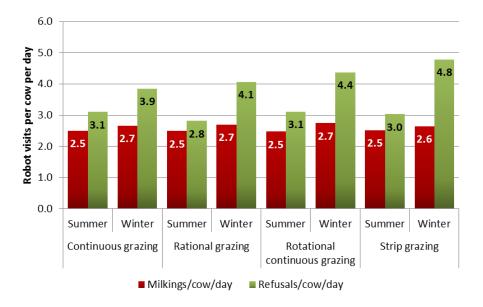

innovators in agriculture

Milking per cow per day = Grazing system * Season + FarmID(random)

	Value	p-value
Intercept (Continuous grazing, Summer)	2.5	0.000 *
System: Rational grazing	-0.01	0.894
System: Rotational continuous grazing	-0.03	0.652
System: Strip grazing	0.01	0.939
Season: Winter	0.16	0.000 *
Rational grazing - Winter	0.05	0.000 *
Rotational continuous grazing - Winter	0.11	0.000 *
Strip Grazing - Winter	-0.03	0.047 *

Results

Results

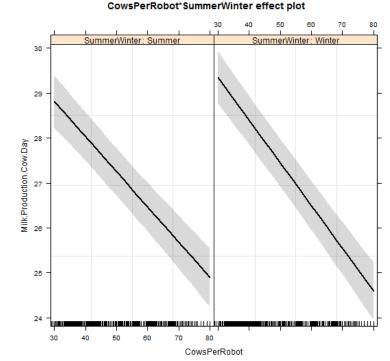

- innovators in agriculture

Refusals per cow per day

= Grazing system * Season + FarmID(random)

Drop in refusals

	Value	p-value
Intercept (Continuous grazing, Summer)	3.1	0.000 *
System: Rational grazing	-0.29	0.455
System: Rotational continuous grazing	0.01	0.978
System: Strip grazing	-0.07	0.878
Season: Winter	0.75	0.000 *
Rational grazing - Winter	0.50	0.000 *
Rotational continuous grazing - Winter	0.51	0.000 *
Strip Grazing - Winter	1.00	0.000 *

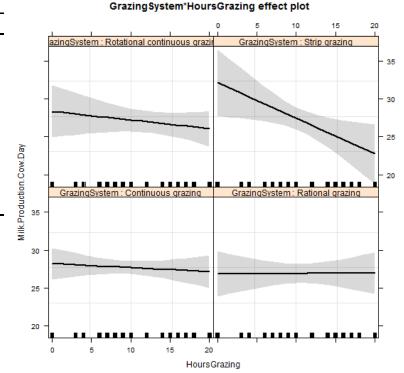

innovators in agriculture

Milk production per cow per day = Cows per AMS * Season + FarmID(random)

	Value p	-value
Intercept (Summer)	31.2	0.000 *
Cows Per Robot	-0.08	0.000 *
Season: Winter	1.03	0.000 *
Interaction: Cows Per Robot*Season	-0.02	0.000 *

Cows per AMS

• From 52 cows per AMS grazing has positive effect on production


innovators in agriculture

Milk production per cow per day = Grazing system * Grazing hours + Cows per Robot + FarmID(random)

	Value	p-value
Intercept (Continuous grazing)	36.6	0.000 *
System: Rational grazing	-1.37	0.460
System: Rotational continuous grazing	0.14	0.944
System: Strip grazing	3.94	0.112
Hours Grazing	-0.05	0.587
Cows per Robot	-0.17	0.000 *
Rational grazing - Hours grazing	0.06	0.718
Rotational continuous grazing - Hours grazing	-0.06	0.706
Strip Grazing - Hours grazing	-0.42	0.061 .

Grazing hours

 Trend between strip grazing and grazing hours

Discussion

- innovators in agriculture

- Grazing system ~ Milk yield
 - Strip grazing > Higher yield
 - Low yielding farms in the winter
 - Rotational continuous grazing > Lower yield
 - High yielding farms in the winter
- Grazing system ~ Visit behavior
 - Drop in milk visits is around 0.2, milk yield per milking stays good
 - Refusals is still above 1, meaning that visit behaviour is good

Discussion

innovators in agriculture

- Number of cows per robot ~ Milk production
 - Slight drop in milkings per cow
 - More time for low ranked cow and heifers
- Grazing system ~ grazing hours
 - Extensive strip grazing tends to lower production
 - Amount of grazed grass in ration

Conclusion

- innovators in agriculture -

- Grazing has an impact on robot visit behaviour
 - Impact is manageable
- Reduced visit behaviour positively affects the milk production when milking over 52 cows per robot

Successful grazing with automatic milking is very well possible!

innovators in agriculture

www.lely.com