Predicting the accuracy of multi-population genomic prediction

Yvonne Wientjes

2nd September, 2015

Piter Bijma, Roel Veerkamp, Mario Calus

Acknowledgements

Designing breeding programs

Maximize response to selection

Designing breeding programs

Maximize response to selection

Accuracy for different designs

Accuracy of genomic selection

Size of reference population

Accuracy of genomic prediction

Accuracy of genomic selection

Size of reference population

Accuracy of genomic prediction

Combine populations:

- Countries
- Lines

- Breeds
- Bulls/Cows

Aim of this study

Derive and **validate**:

Prediction equation for accuracy of GEBVs using multiple populations in the reference population

Schematic overview

Schematic overview – an example

Schematic overview

Input parameters

Reference population

- Number of animals (n_P)
- Heritability (h^2)
- Genetic correlation (r_G)

Selection candidates – Reference population

- Genetic correlations (r_G)
- Number of independent chromosome segments shared (M_e)

M_e across populations

'Effective number of estimated effects'

```
Pop. B \longrightarrow M_e = 4

Pop. C \longrightarrow M_e = 5

Pop. B - C \longrightarrow M_e = 18
```

M_e across populations

'Effective number of estimated effects'

Pop. B
$$\longmapsto$$
 $M_e = 4$
Pop. C \longmapsto $M_e = 5$
Pop. B - C \longmapsto $M_e = 18$

Relationship matrix

Input parameters

Reference population

- Number of animals (n_P)
- Heritability (h^2)
- Genetic correlation (r_G)

Selection candidates – Reference population

- Genetic correlations (r_G)
- Number of independent chromosome segments shared (M_e)

$$r_{GEBV_{A+B,C}} = \sqrt{ \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} & r_{G_{B,C}} \sqrt{\frac{h_B^2}{M_{e_{B,C}}}} \end{bmatrix} \begin{bmatrix} \frac{h_A^2}{M_{e_{A,C}}} + \frac{1}{n_{p,A}} & r_{G_{A,B}} \frac{\sqrt{h_A^2 h_B^2}}{\sqrt{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{A,B}} \frac{\sqrt{h_A^2 h_B^2}}{\sqrt{M_{e_{A,C}} M_{e_{B,C}}}} & \frac{h_B^2}{M_{e_{B,C}}} + \frac{1}{n_{p,B}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \end{bmatrix}^{-$$

Derived equation

$$r_{GEBV_{A+B,C}} = \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} & r_{G_{B,C}} \sqrt{\frac{h_B^2}{M_{e_{B,C}}}} \end{bmatrix} \begin{bmatrix} \frac{h_A^2}{M_{e_{A,C}}} + \frac{1}{h_{p,A}} & r_{G_{A,B}} \frac{\sqrt{h_A^2 h_B^2}}{\sqrt{M_{e_{A,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{A,B}} \sqrt{\frac{h_A^2 h_B^2}{M_{e_{A,C}} M_{e_{B,C}}}} & \frac{h_B^2}{M_{e_{B,C}}} + \frac{1}{h_{p,B}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_B^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}}$$

Derived equation

- 1 population in reference
 - → Equal to Daetwyler et al. (2008)

$$r_{GEBV_{A+B,C}} = \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{(h_A^2)}{M_{e_{A,C}}}} & r_{G_{B,C}} \sqrt{\frac{(h_B^2)}{M_{e_{B,C}}}} \end{bmatrix} \begin{bmatrix} \frac{(h_A^2)}{M_{e_{A,C}}} + \frac{1}{(n_{p,A})} & r_{G_{A,B}} \frac{\sqrt{(h_A^2 h_B^2)}}{\sqrt{M_{e_{A,C}} M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{(h_A^2)}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{(h_A^2)}{M_{e_{A,C}}}} & \frac{(h_A^2)}{M_{e_{B,C}}} \end{bmatrix}^{-1} \\ r_{G_{B,C}} \sqrt{\frac{(h_A^2)}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{(h_A^2)}{M_{e_{A,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{(h_A^2)}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \end{bmatrix}$$

Simulations for validation

Genotypes of 1033 HF animals

422 405 SNPs 50 000 candidate QTL (Random or Low MAF)

Phenotypes

Simulated (4000 QTL)

TBV + E

Simulations for validation

Genotypes of 1033 HF animals

422 405 SNPs 50 000 candidate QTL (Random or Low MAF)

Phenotypes

Simulated (4000 QTL) TBV + E

Breeding value (GEBV) estimation

Multi-trait GBLUP

Empirical Accuracy

Correlation GEBV with TBV

Populations for validation

Division:

Half-sib families kept in same population

Scenarios for validation

Selection Candidates

	Heritability (h²)		Genetic correlation (r_G)		
Scenarios	Pop. A	Pop. B	Pop. A - B	Pop. A – C	Pop. B - C
Different countries	0.95	0.95	0.6	0.8	0.4
Bulls/cows	0.95	0.30	1.0	1.0	1.0
Different traits	0.95	0.30	0.6	1.0	0.6

Results of validation

Predicted accuracy
Empirical accuracy

Results of validation

Results of validation

Conclusion

Equation accurately predicts GEBV accuracy

- Multiple populations:
 - Countries
 - Bulls/Cows
 - Traits
 - Breeds?
- All genetic variance captured

Conclusion

Equation accurately predicts GEBV accuracy

- Multiple populations:
 - Countries
 - Bulls/Cows
 - Traits
 - Breeds?
- All genetic variance captured

yvonne.wientjes@wur.nl

