Genomic prediction of growth in pigs based on additive and dominance effects

Marcos Lopes 1,2

John Bastiaansen² Luc Janss³ Egbert Knol¹ Henk Bovenhuis²

IOLECI II AR BIOLOGY AND GENETIC

Acknowledgement

www.breed4food.com

Recent developments

Focus: additive effects (EBV)

Performance? Dominance effects?

Recent developments

Pedigree-based

⊗ difficult to accurately estimate dominance effects

de Boer et al. (1993); Misztal (1997)

Genomic-based

② Dominance variance and dominance effects in genomic evaluations

Toro and Varona (2010); Su et al. (2012); Vitezica et al. (2013); Zeng et al. (2013); Da et al. (2014); etc.

Do dominance effects contribute to the phenotypic variance of growth in purebred pig populations?

Material and methods

- Genotyped 60K chip
- Growth: from birth to ~120Kg (pre-corrected)

Within line (>30,000 animals) pedigree-based linear model in ASReml v3 (Gilmour et al., 2009)

y ~ sex + HYW + BW + litter + pen + animal + e

$$y_c = y - sex - HYW - BW - pen$$

Material and methods

Random regression on SNP genotypes: BayZ (<u>http://www.bayz.biz/</u>)

$$y_c = \mathbf{1}\mu + \mathbf{L}\mathbf{b} + \mathbf{A}\mathbf{a} + \mathbf{e}$$
(MA)
$$y_c = \mathbf{1}\mu + \mathbf{L}\mathbf{b} + \mathbf{A}\mathbf{a} + \mathbf{D}\mathbf{d} + \mathbf{e}$$
(MAD)

Vitezica et al. (2013); Nishio and Satoh (2014)

$$\mathbf{A}_{i,j} = \begin{cases} 0 - 2p_j \\ 1 - 2p_j \\ 2 - 2p_j \end{cases} \text{ and } \mathbf{D}_{i,j} = \begin{cases} -2p_j^2 \\ 2p_jq_j \text{ for genotypes} \\ -2q_j^2 \end{cases} \text{ GG}_{CC}$$

a ~ $N(0,\sigma_a^2)$ and d ~ $N(0,\sigma_d^2)$ σ_{Aa}^2 and σ_{Dd}^2 each MCMC cycle MCMC: 350,000 burn-in 50,000 each 100

Variance explained

	Population*	Model	σ_{Aa}^2/σ_p^2	σ_{Dd}^2/σ_p^2	$\sigma_{ m Dd}^2/\sigma_g^2$
	Pietrain	MA	0.26 (0.04)		
		MAD	0.26 (0.04)	0.11 (0.05)	0.30
and the	Landrace	MA	0.28 (0.03)		
		MAD	0.27 (0.03)	0.06 (0.04)	0.18
Photo -	Large White	MA	0.26 (0.03)		
		MAD	0.26 (0.03)	0.04 (0.02)	0.13

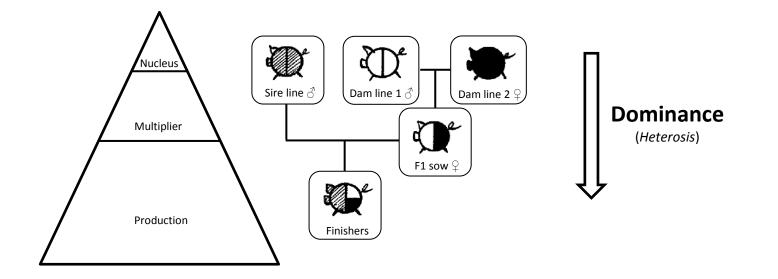
*80% oldest animals were used for estimating variance components

 $\sigma_p^2 = \sigma_{Aa}^2 + \sigma_{Dd}^2 + \sigma_L^2 + \sigma_e^2$ $\sigma_g^2 = \sigma_{Aa}^2 + \sigma_{Dd}^2$ **Topigs Norsvin**

Can we predict phenotypes more accurately using **MAD** instead of **MA**?

Accuracy of prediction

	Population*	Model	û	ĝ
St. A	Pietrain	MA	0.195	
MM		MAD	0.190	0.222
	Landrace	MA	0.277	
AND N		MAD	0.277	0.284
	Larga W/bita	MA	0.354	
MAS	Large White	MAD	0.354	0.359


LR.

û= Aâ ĝ= Aâ + Dd

*20% youngest animals were used for validation Corrrelation(\hat{u} or \hat{g} , y_c)

Do dominance effects contribute to the phenotypic variance of growth in **CROSSBRED** pig populations?

Final considerations

- σ_{Dd}^2 accounts for 13-30% of σ_g^2
- $\sigma_{\rm Aa}^2/\sigma_p^2$ was similar across lines (0.26-0.28)
- $\sigma_{\rm Dd}^2/\sigma_p^2$ varied considerably across populations (0.04-0.11)

• $\uparrow \sigma_{\rm Dd}^2 / \sigma_g^2$, \uparrow added value for predicting phenotypes (growth)

• Larger datasets

