Genomic prediction and GWAS with sequence information versus HD or 50k SNP chips

Roel Veerkamp, Rianne van Binsbergen, Mario Calus, Chris Schrooten, Aniek Bouwman

- Whole genome sequence data expected to perform better in GWAS and GS, ore persistent across generations / breeds
 - Causal mutation (QTN) is included
 - No dependency on LD between SNP and QTL

Identifying QTN with GS?

WAGENINGEN UR

R. van Binsbergen^{*,†}, M.P.L. Calus^{*}, M.C.A.M. Bink[†], C. Schrooten[‡], F.A. van Eeuwijk[†], R.F. Veerkamp^{*}.

3

HD SNP:

The potential benefit of using sequence data for

• QTL detection

i.r.t.

- Explaining total genetic variation
- Prediction accuracy GS

Method (1): Imputation to sequence

5556 Holstein Friesian bulls CRV

777K SNP genotypes (Illumina BovineHD BeadChip)

1147 animals (multiple breeds)

28M SNP (whole-genome sequence data)

1000 bull genomes project Run 4

5556 Holstein Friesian bulls with phenotype (PY) and imputed sequence

3469 bulls used for discovery and training & 2287 bulls used for validation

Aniek Bouwman

Method (2): statistical models

GWAS using <u>single</u> SNP regression (GCTA)

- GWAS using single SNP regression
- Include GRM based on HD SNP set
- MAF >0.01

<u>Conditional and joint GWAS (COJO)</u>

 Stepwise selection of SNP explaining additional variance
Conditional and joint multiple-SNP analysi

Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits

Jian Yang^{1,2}, Teresa Ferreira³, Andrew P Morris³, Sarah E Medland¹, Genetic Investigation of ANthropometric Traits (GIANT) Consortium⁴, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium⁴, Pamela A F Madden⁵, Andrew C Heath⁵, Nicholas G Martin¹, Grant W Montgomery¹, Michael N Weedon⁶, Ruth J Loos⁷, Timothy M Frayling⁶, Mark I McCarthy^{3,8}, Joel N Hirschhorn^{0–13}, Michael E Goddard^{14,15} & Peter M Visscher^{1,2,16}

Method (3): Two validation methods

SNP set selection from GWAS:

- 1. Estimate heritability in validation animals using GRM based on selected sets of SNP
- 2. Train GRM (based on selected SNP sets) on discovery animals, back solve SNP and predict DGV for 2287 validation animals. Correlate DGV with phenotypes.

Results GWAS: 50K

Chromosome

Results GWAS : HD

Chromosome

Results GWAS Sequence + cojo5

Chromosome

Results GWAS: Cojo5 on Chr14 (DGAT)

Chromosome 14 position(Mb)

Results: SNP set selection GWAS

Number of SNP selected in the different SNP sets:

	Sequence	HD	50k	СОЈО
All	13,789,029	656,044	49,580	
-log(p)>3	24,387	1,238	120	119
-log(p)>5	2,194	159	27	49

Results: Heritability

h², phenotypic variance explained by GRM using selected SNP sets

GRMs	Sequence	HD	50k	СОЈО
All	0.83	0.82	0.81	
-log(p)>3	0.53	0.40	0.22	0.24
-log(p)>5	0.60 *	0.43 *	0.22 *	0.16

* Scale problems with GRM when estimating variances

Results: Genomic prediction

Correlation between genomic breeding value and phenotype

GRMs	Sequence	HD	50k	COJO
All	0.68	0.68	0.68	
-log(p)>3	0.58	0.56	0.42	0.38
-log(p)>5	0.39	0.30	0.28	0.31

- Simply using sequence within Holstein population, unlikely to improve GS, but helps QTL detection.
- Subsets of selected SNP always poorer h² and GS
 - Full seq. accuracy GS of 0.68 and $h^2 = 0.83$
 - 51 SNPs accuracy GS of 0.31 and $h^2 \approx 0.16$ (DGAT!)

Good way to get realistic expectations from QTL.

Acknowledgements

1000 bull genomes consortium

www.1000bullgenomes.com

